Skip to main content
Log in

Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation–Anion Exchange Membrane

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The capacitive deionization of water (CDW) was investigated with the purpose to obtain pure water. To this end, mosaic cation–anion-exchange membranes and activated carbon electrodes were used. The mosaic membranes contained cation- and anion-exchange components embedded in a synthetic-fiber-based matrix. The means of preparation for the pressed mosaic membranes included pressing the cation- and anion-exchange membranes into each other. Another method was via the subsequent formation of cation- and anion-exchange bands in the fibrous matrix (in a banded membrane). The activated carbon electrodes and mosaic membranes possessed sufficient specific ion surface conductivities even in clean water. The specific energy consumption was 31.9 and 111.7 W mol–1 for the CDW devices containing banded and pressed membranes, respectively. Therefore, the banded membrane was preferable for obtaining pure drinking water. It was found that the CDW with the banded mosaic membrane exhibited the best performance at a voltage of 2 V and a solution flow rate of 15 cm3/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The values of exchange capacities were measured by V.V. Milutin.

REFERENCES

  1. Oren, Y., Desalination, 2008, vol. 228, p. 10.

    Article  CAS  Google Scholar 

  2. Avraham, E., Noked, M., Bouhadana, Y., et al., J. Electrochem. Soc., 2009, vol. 156, p. 157.

    Article  CAS  Google Scholar 

  3. Suss, M.E., Baumann, T.F., Bourcier, W.L., et al., Energy Environ. Sci., 2012, vol. 5, p. 9511.

    Article  CAS  Google Scholar 

  4. Farmer, J.C., Fix, D.V., Mack, G.V., et al., Proc. Low Level Waste Conference, Orlando, FL, 1995.

  5. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Science and Engineering, Elsevier, 2010.

    Google Scholar 

  6. Rica, R.A., Ziano, R., Salerno, D., et al., Phys. Rev. Lett., 2012, vol. 109, p. 156103.

    Article  CAS  Google Scholar 

  7. Porada, S., Zhao, R., Van Der Wal, A., et al., Prog. Mater. Sci., 2013, vol. 58, p. 1388.

    Article  CAS  Google Scholar 

  8. Jande, Y.A. and Kim, W.S., Desalination, 2013, vol. 329, p. 29.

    Article  CAS  Google Scholar 

  9. Soffer, A. and Folman, M., J. Electroanal. Chem., 1972, vol. 38, p. 25.

    Article  CAS  Google Scholar 

  10. Li, H., Pan, L., Lu, T., et al., J. Electroanal. Chem., 2011, vol. 653, p. 40.

    Article  CAS  Google Scholar 

  11. Volfkovich, Yu.M., Russ. J. Electrochem., 2020, vol. 56, p. 1.

    Article  Google Scholar 

  12. Kang, J., Kim, T., Jo, K., et al., Desalination, 2014, vol. 352, p. 52.

    Article  CAS  Google Scholar 

  13. Kim, T., Dykstra, J.E., Porada, S., et al., J. Colloid Interface Sci., 2015, vol. 446, p. 317.

    Article  CAS  Google Scholar 

  14. Yang Li, Jiaming Shen, Jiansheng Li, et al., Carbon, 2017, vol. 116, p. 21.

    Article  CAS  Google Scholar 

  15. Krüner, B., Srimuk, P., Fleischmann, S., et al., Carbon, 2017, vol. 117, p. 46.

    Article  CAS  Google Scholar 

  16. Choi, S., Chang, B., Kang, J.H., et al., J. Membr. Sci., 2017, vol. 541, p. 580.

    Article  CAS  Google Scholar 

  17. Andelman, M., Sep. Purif. Technol., 2011, vol. 80, p. 262.

    Article  CAS  Google Scholar 

  18. Anderson, M.A., Cudero, A.L., and Palma, J., Electrochim. Acta, 2010, vol. 55, p. 3845.

    Article  CAS  Google Scholar 

  19. Xu, P., Jorg, E., Drewes, J.E., et al., Water Res., 2008, vol. 42, p. 2605.

    Article  CAS  Google Scholar 

  20. Strathmann, H., Ion-Exchange Membrane Process: Their Principle and Practical Applications, Hopkinton, MA: Balaban Desalination Publ., 2016.

    Google Scholar 

  21. Liu, S., Kyle, C., and Smith, K.C., Electrochim. Acta, 2017, vol. 230, p. 333.

    Article  CAS  Google Scholar 

  22. Yang, S.C., Choi, J., Yeo, J., et al., Environ. Sci. Technol., 2016, vol. 50, p. 5892.

    Article  CAS  Google Scholar 

  23. Biesheuvel, P.M., Bazant, M.Z., Cusick, R.D., et al., Appl. Phys., 2017, vol. 16, p. 19.

    Google Scholar 

  24. Xie, J., Xue, Y., and He, M., Carbon, 2017, vol. 123, p. 574.

    Article  CAS  Google Scholar 

  25. Tang, W., He, D., Zhang, C., et al., Water Res., 2017, vol. 121, p. 302.

    Article  CAS  Google Scholar 

  26. Hassanvand, A., Chen, G.Q., Webley, P.A., et al., Desalination, 2017, vol. 417, p. 36.

    Article  CAS  Google Scholar 

  27. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999.

    Book  Google Scholar 

  28. Burke, A., J. Power Sources, 2000, vol. 91, p. 37.

    Article  CAS  Google Scholar 

  29. Volfkovich, Yu.M. and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 93.

    Article  Google Scholar 

  30. Pandolfo, A.G. and Hollenkamp, A.F., J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  31. Sharma, P. and Bhatti, T.S., Energy Convers. Manage., 2010, vol. 51, p. 2901.

    Article  CAS  Google Scholar 

  32. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., J. Solid State Electrochem., 2014, vol. 18, p. 1351.

    Article  CAS  Google Scholar 

  33. Volfkovich, Yu.M., Mazin, V.M., and Urisson, N.A., Russ. J. Electrochem., 1998, vol. 34, p. 740.

    CAS  Google Scholar 

  34. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, Hoboken, NJ: Wiley, 2015.

  35. Andelman, M., Sep. Purif. Technol., 2011, vol. 80, p. 262.

    Article  CAS  Google Scholar 

  36. Volfkovich, Yu.M., Rychagov, A.Yu., Mikhalin, A.A., et al., Desalination, 2018, vol. 426, p. 1.

    Article  CAS  Google Scholar 

  37. Kardash, M.M., Volfkovich, Yu.M., Tyurin, I.A., et al., Pet. Chem., 2013, vol. 53, p. 482.

    Article  CAS  Google Scholar 

  38. Kardash, M.M. and Terin, D.V., Pet. Chem., 2016, vol. 56, p. 413.

    Article  CAS  Google Scholar 

  39. Kardash, M.M., Fedorchenko, N.B., and Epancheva, O.V., Fibre Chem., 2002, vol. 34, p. 466.

    Article  CAS  Google Scholar 

  40. http://www.kynol.de/pdf/.

  41. Volfkovich, Yu.M. and Bagotzky, V.S., J. Power Sources, 1994, vol. 48, p. 339.

    Article  CAS  Google Scholar 

  42. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.

    Book  Google Scholar 

  43. Volfkovich, Yu.M., Sakars, A.V., and Volinsky, A.A., Int. J. Nanotechnol., 2005, vol. 2, p. 292.

    Article  CAS  Google Scholar 

  44. Dzyazko, Yu.S., Ponomaryova, L.N., Volfkovich, Yu.M., et al., Microporous Mesoporous Mater., 2014, vol. 198, p. 55.

    Article  CAS  Google Scholar 

  45. Rouquerol, J., Baron, G., Denoyel, R., et al., Pure Appl. Chem., 2012, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  46. Fedorchenko, N.B., Kardash, M.M., and Fedorchenko, A.A., Fibre Chem., 2003, no. 5, p. 352.

  47. GOST (State Standard) no. 17552-72: Ion-Exchange Membranes. Method for Determination of Total and Equilibrium Exchange Capacity, Moscow: Izd. Standartov, 1972.

  48. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., et al., Adv. Colloid Interface Sci., 2008, vol. 139, p. 3.

    Article  CAS  Google Scholar 

  49. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., J. Solid State Electrochem., 2014, vol. 18, p. 1351.

    Article  CAS  Google Scholar 

  50. Kinoshita, K., Carbon: Electrochemical and Physical Properties, New York: Wiley, 1988.

    Google Scholar 

  51. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.

    Google Scholar 

  52. Volfkovich, Yu.M., Mikhalin, A.A., and Rychagov, A.Yu., Russ. J. Electrochem., 2013, vol. 49, p. 594.

    Article  CAS  Google Scholar 

  53. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., et al., in Nanooptics, Nanophotonics, Nanomaterials, and Their Applications, Fesenko, O. and Yatsenko, L., Eds., Springer, 2018, chapter 9, p. 127.

    Google Scholar 

  54. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2001.

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, (reg. number: АААА-А19-119041890032-6) as well as within the framework of project no. 19-08-00721 of the Russian Foundation of Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Volfkovich.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M., Mikhalin, A.A., Rychagov, A.Y. et al. Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation–Anion Exchange Membrane. Prot Met Phys Chem Surf 57, 68–79 (2021). https://doi.org/10.1134/S2070205121010214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121010214

Keywords:

Navigation