Skip to main content
Log in

Anion-selective capacitive deionization using functionalized rGO thin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Drinking water shortage is worsening. Capacitive deionization (CDI) of saltwater has gained attention due to its low energy consumption and environmental friendliness. A single anion exchange membrane (AEM) can selectively move anions to positive electrodes for better desalination performances. Poly(diallyldimethylammonium chloride)-functionalized reduced graphene oxide (PrGO) serves as an AEM for CDI. The AC and PrGO coated AC electrode pair (AC‖PrGO/AC) for CDI of saltwater under + 1.5 V for 1 h reaches a high optimized-salt removal and electrosorption capacity. This work presents the feasibility using the high-efficiency and facile PrGO anion-selective thin film layer served as an AEM analog for a simplified and low-cost membrane-CDI process to enhance desalination performances for potential water recycling and reuse from salt, inorganic waste or metal-contaminated ground waters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3

Similar content being viewed by others

Data availability

The data that support this study will be shared upon reasonable request to the corresponding author.

Code availability

Not applicable.

References

  1. O. Bozorg-Haddad, B. Zolghadr-Asli, P. Sarzaeim, M. Aboutalebi, X. Chu, H.A. Loáiciga, Evaluation of water shortage crisis in the Middle East and possible remedies. J. Water Supply Res. Technol. AQUA 69, 85 (2020)

    Article  Google Scholar 

  2. C.F. Couto, A.V. Santos, M.C.S. Amaral, L.C. Lange, L.H. de Andrade, A.F.S. Foureaux, B.S. Fernandes, Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal. J. Water Process Eng. 33, 101029 (2020)

    Article  Google Scholar 

  3. Q.J. Wei, C.I. Tucker, P.J. Wu, A.M. Trueworthy, E.W. Tow, Impact of salt retention on true batch reverse osmosis energy consumption: experiments and model validation. Desalination 479, 114177 (2020)

    Article  CAS  Google Scholar 

  4. R. Shafique, M. Rani, A. Mahmood, S. Khan, N. Janjua, M. Sattar, K. Batool, T. Yaqoob, Copper chromite/graphene oxide nanocomposite for capacitive energy storage and electrochemical applications. Int. J. Environ. Sci. Technol. 19, 7517 (2022)

    Article  CAS  Google Scholar 

  5. L. Chang, Y. Fei, Y.H. Hu, Structurally and chemically engineered graphene for capacitive deionization. Journal of Materials Chemistry A 9, 1429 (2021)

    Article  CAS  Google Scholar 

  6. H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: a state-of-the-art review. Desalination 491, 114569 (2020)

    Article  CAS  Google Scholar 

  7. G.-W. Liu, C.-S. Fan, C.-H. Hsu, C.-H. Hou, H.-P. Lin, Optimizing the micro/mesoporous structure of hierarchical porous carbon synthesized from petroleum pitch using the solvent-free method for ultra-fast capacitive deionization. ACS Omega (2022). https://doi.org/10.1021/acsomega.2c04119

    Article  Google Scholar 

  8. Z.-H. Huang, Z. Yang, F. Kang, M. Inagaki, Carbon electrodes for capacitive deionization. J. Mater. Chem. A 5, 470 (2017)

    Article  CAS  Google Scholar 

  9. W. Kong, X. Ge, Q. Zhang, Y. Wang, Y. Wang, J. Lu, M. Zhang, D. Kong, Y. Feng, Ultrahigh content boron and nitrogen codoped hierarchically porous carbon obtained from biomass byproduct okara for capacitive deionization. ACS Omega (2022). https://doi.org/10.1021/acsomega.2c06449

    Article  Google Scholar 

  10. W. Zhang, B. Jia, Toward anti-fouling capacitive deionization by using visible-light reduced TiO2/graphene nanocomposites. MRS Commun. 5, 613 (2015)

    Article  CAS  Google Scholar 

  11. P.A. Chen, H.C. Cheng, H.P. Wang, Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water. J. Clean. Prod. 174, 927 (2018)

    Article  CAS  Google Scholar 

  12. A.B. Ganganboina, R.-A. Doong, Nitrogen doped graphene quantum dot-decorated earth-abundant nanotubes for enhanced capacitive deionization. Environ. Sci. Nano 7, 228 (2020)

    Article  CAS  Google Scholar 

  13. M. Liu, M. Xu, Y. Xue, W. Ni, S. Huo, L. Wu, Z. Yang, Y.-M. Yan, Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes. ACS Appl. Mater. Interfaces 10, 31260 (2018)

    Article  CAS  Google Scholar 

  14. S.-W. Tsai, L. Hackl, A. Kumar, C.-H. Hou, Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination 497, 114764 (2021)

    Article  CAS  Google Scholar 

  15. F. Gao, L. Wang, J. Wang, H. Zhang, S. Lin, Nutrient recovery from treated wastewater by a hybrid electrochemical sequence integrating bipolar membrane electrodialysis and membrane capacitive deionization. Environ. Sci.: Water Res. Technol. 6, 383 (2020)

    CAS  Google Scholar 

  16. N. Kim, J. Lee, S.P. Hong, C. Lee, C. Kim, J. Yoon, Performance analysis of the multi-channel membrane capacitive deionization with porous carbon electrode stacks. Desalination 479, 114315 (2020)

    Article  CAS  Google Scholar 

  17. A. Rommerskirchen, M. Alders, F. Wiesner, C.J. Linnartz, A. Kalde, M. Wessling, Process model for high salinity flow-electrode capacitive deionization processes with ion-exchange membranes. J. Membr. Sci. 616, 118614 (2020)

    Article  CAS  Google Scholar 

  18. L. Kong, E. Palacios, X. Guan, M. Shen, X. Liu, Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes. J. Membr. Sci. (2022). https://doi.org/10.1016/j.memsci.2022.120645

    Article  Google Scholar 

  19. M. Gaikwad, S. Suman, K. Shukla, A. Sonawane, S. Jain, A review on recent contributions in the progress of membrane capacitive deionization for desalination and wastewater treatment. Int. J. Environ. Sci. Technol. (2023). https://doi.org/10.1007/s13762-023-04778-z

    Article  Google Scholar 

  20. M. An, Ion removal trends in capacitivedeionization and its applicationfor treating industrial effluents, (2020)

  21. H. Cheng, P. Chen, C. Peng, S. Liu, H. Paul Wang, Sulfonated GO coated carbon electrodes with cation-selective functions for enhanced capacitive deionization of saltwater. Environ. Technol. (2022). https://doi.org/10.1080/09593330.2022.2153748

    Article  Google Scholar 

  22. X. Gu, Y. Deng, C. Wang, Fabrication of anion-exchange polymer layered graphene-melamine electrodes for membrane capacitive deionization. ACS Sustain. Chem. Eng. 5, 325 (2016)

    Article  Google Scholar 

  23. W. Wu, Y. Shi, G. Liu, X. Fan, Y. Yu, Recent development of graphene oxide based forward osmosis membrane for water treatment: a critical review. Desalination 491, 114452 (2020)

    Article  CAS  Google Scholar 

  24. U. Khan, A. Nairan, J. Gao, Q. Zhang, Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct (2022). https://doi.org/10.1002/sstr.202200109

    Article  Google Scholar 

  25. W. Zhang, L. Wei, J. Ma, S.-L. Bai, Exfoliation and defect control of graphene oxide for waterborne electromagnetic interference shielding coatings. Compos. A Appl. Sci. Manuf. 132, 105838 (2020)

    Article  CAS  Google Scholar 

  26. T. Taniguchi, L. Nurdiwijayanto, N. Sakai, K. Tsukagoshi, T. Sasaki, T. Tsugawa, M. Koinuma, K. Hatakeyama, S. Ida, Revisiting the two-dimensional structure and reduction process of graphene oxide with in-plane X-ray diffraction. Carbon 202, 26 (2023)

    Article  CAS  Google Scholar 

  27. G. Wang, C. He, W. Yang, F. Qi, G. Qian, S. Peng, C. Shuai, Surface-modified graphene oxide with compatible interface enhances poly-L-lactic acid bone scaffold. J. Nanomater. (2020). https://doi.org/10.1155/2020/5634096

    Article  Google Scholar 

  28. X. Du, H. Zhang, Y. Yuan, Z. Wang, Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly (diallyldimethylammonium chloride). Green Energy Environ. (2020). https://doi.org/10.1016/j.gee.2020.06.015

    Article  Google Scholar 

  29. L.-G. Chong, P.-A. Chen, J.-Y. Huang, H.-L. Huang, H.P. Wang, Capacitive deionization of a RO brackish water by AC/graphene composite electrodes. Chemosphere 191, 296 (2018)

    Article  CAS  Google Scholar 

  30. Y. Zhang, P. Srimuk, M. Aslan, M. Gallei, V. Presser, Polymer ion-exchange membranes for capacitive deionization of aqueous media with low and high salt concentration. Desalination 479, 114331 (2020)

    Article  CAS  Google Scholar 

  31. J.-S. Kim, J.-H. Choi, Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. J. Membr. Sci. 355, 85 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports of the Taiwan Ministry of Science and Technology (108-2221-E-006-165-MY3, 109-2221-E-006-042-MY3 and 110-2221-E-006-107-MY2) are gratefully acknowledged.

Funding

Taiwan Ministry of Science and Technology (108-2221-E-006-165-MY3, 109-2221-E-006-042-MY3 and 110-2221-E-006-107-MY2).

Author information

Authors and Affiliations

Authors

Contributions

HCC and HPW contributed to the study conception and design. Material synthesis, data collection, analysis and manuscript preparation were performed by HCC. PAC and HPW have made a major improvement of the 1st-draft manuscript. CYP, SHL, YJT and HPW supervised this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Paul Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, HC., Chen, PA., Peng, CY. et al. Anion-selective capacitive deionization using functionalized rGO thin films. MRS Communications 13, 1342–1348 (2023). https://doi.org/10.1557/s43579-023-00465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00465-9

Keywords

Navigation