Skip to main content
Log in

Electrodialysis Separation and Selective Concentration of Sulfuric Acid and Nickel Sulfate Using Membranes Modified with Polyaniline

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Surface-modified cation exchange materials are obtained based on industrial MK-40 heterogeneous and MF-4SK homogeneous cation-exchange membranes by in situ oxidative polymerization of aniline under electrodialysis conditions. The conduction and diffusion characteristics of the initial and modified membranes in solutions of sulfuric acid and nickel sulfate are studied. It is shown that the modification of the membranes with polyaniline leads to a decrease in their electrical conductivity and diffusion permeability without sacrificing high selectivity. The diffusion permeability of the cation-exchange membranes is higher in solutions of nickel sulfate in comparison with solutions of sulfuric acid, while an inverse dependence is found for anion-exchange membranes. The competitive transport of sulfuric acid and nickel sulfate during electrodialysis separation and concentration of their mixture using initial commercial and modified cation-exchange membranes paired with an MA-41 anion-exchange membrane is studied. It is shown that applying a layer of polyaniline with positively charged groups onto one of the surfaces of MK-40 or MF-4SK cation-exchange membranes leads to a decrease in the transport of a doubly charged nickel cation both in the separation and concentration modes over the entire range of current densities. The highest repulsion effect is observed in the case of the use of homogeneous modified membranes, where the selective permeability coefficient P(H2SO4/NiSO4) increases from 0.7–1.7 up to 32.5–19.7 depending on the current density. It is found that the use of surface-modified with polyaniline cation-exchange membranes makes it possible to concentrate a solution containing 0.1 mol-equiv/L (4.9 g/L) H2SO4 and 0.1 mol-equiv/L (7.7 g/L) NiSO4 with simultaneous separation to sulfuric acid with a concentration of about 2.4 mol-equiv/L (120 g/L) and a solution of nickel sulfate. Here, the concentration of nickel sulfate in the concentrate does not exceed 0.13 mol-equiv/L (10 g/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. On the State and Use of Mineral Resources of the Russian Federation in 2020: State Report, Ed. by E. I. Petrov and D. D. Teten’ka (FGBU VIMS, 2021). Applied March 5, 2023. www.rosnedra.gov.ru/data/Files/File/7992.pdf.

  2. A. Abidli, Y. Huang, Z. Ben Rejeb, et al., Chemosphere 292, 133102 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. S. Rajoria, M. Vashishtha, and V. K. Sangal, Environ. Sci. Pollut. Res. 29, 72196 (2022).

    Article  CAS  Google Scholar 

  4. A. Rawat, A. Srivastava, A. Bhatnagar, and A. K. Gupta, J. Cleaner Prod. 383, 135382 (2023).

    Article  CAS  Google Scholar 

  5. X. Yu, Y. Hou, X. Ren, et al., J. Water Proc. Eng. 46, 102577 (2022).

    Article  Google Scholar 

  6. S. Li, M. Dai, I. Ali, et al., Process Safety Environ. Prot. 172, 417 (2023).

    Article  CAS  Google Scholar 

  7. C. Li, G. Dai, R. Liu, et al., Sep. Purif. Technol. 306, 122559 (2023).

    Article  CAS  Google Scholar 

  8. L. Cassayre, B. Guzhov, M. Zielinski, and B. Biscans, Renewable Sustain. Energy Rev. 170, 112983 (2022).

    Article  CAS  Google Scholar 

  9. K. Yan, P. Huang, M. Xia, et al., Sep. Purif. Technol. 295, 121283).

  10. V. A. Shaposhnik and K. Kesore, J. Membr. Sci. 136, 35 (1997).

    Article  CAS  Google Scholar 

  11. T. Xu, J. Membr. Sci. 263, 1.

  12. A. Campione, L. Gurreri, M. Ciofalo, et al., Desalination 434, 121 (2018).

    Article  CAS  Google Scholar 

  13. T. Benvenuti, M. A. S. Rodrigues, A. M. Bernardes, and J. Zoppas-Ferreira, J. Clean. Prod. 155, 130 (2017).

    Article  CAS  Google Scholar 

  14. S. Melnikov, N. Sheldeshov, V. Zabolotsky, et al., Sep. Purif. Technol. 189, 74 (2017).

    Article  CAS  Google Scholar 

  15. A. Achoh, I. Petriev, and S. Melnikov, Membranes 11, 980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Sedighi, M. M. B. Usefi, A. F. Ismail, and M. Ghasemi, Desalination 549, 116319 (2023).

    Article  CAS  Google Scholar 

  17. M. Reig, C. Valderrama, O. Gibert, and J. L. Cortina, Desalination 399, 88 (2016).

    Article  CAS  Google Scholar 

  18. M. Ahmad, M. Ahmed, S. Hussain, et al., Desalination 545, 116159 (2023).

    Article  CAS  Google Scholar 

  19. D. V. Golubenko, A. D. Manin, Y. Wang, T. Xu, A. B. Yaroslavtsev, Desalination 531, 115719 (2022).

    Article  CAS  Google Scholar 

  20. S. Zhang, S. Wang, Z. Guo, et al., Sep. Purif. Technol. 300, 121926 (2022).

    Article  CAS  Google Scholar 

  21. W. Wang, G. Hong, Y. Zhang, et al., J. Membr. Sci. 675, 121534 (2023).

    Article  CAS  Google Scholar 

  22. J. Yan, H. Wang, H. Yan, et al., Desalination 554, 116513 (2023).

    Article  CAS  Google Scholar 

  23. I. A. Stenina, P. A. Yurova, L. Novak, et al., Colloid Polym. Sci. 299, 719 (2021).

    Article  CAS  Google Scholar 

  24. I. Stenina, P. Yurova, A. Achoh, et al., Polymers (Basel) 15, 647 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. W. Zhang, M. Miao, and J. Pan, Desalination 411, 28 (2017).

    Article  CAS  Google Scholar 

  26. V. I. Zabolotsky, A. R. Achoh, K. A. Lebedev, and S. S. Melnikov, J. Membr. Sci. 608, 118152 (2020).

    Article  CAS  Google Scholar 

  27. V. D. Grebenyuk, B. K. Veisov, R. D. Chebotareva, et al., Zh. Prikl. Khim. 59, 916 (1986).

    CAS  Google Scholar 

  28. N. P. Gnusin and O. A. Demina, Theor. Found. Chem. Eng. 40, 27 (2006).

    Article  CAS  Google Scholar 

  29. V. I. Zabolotskii, A. V. Demin, and O. A. Demina, Russ. J. Electrochem. 47, 327 (2011).

    Article  CAS  Google Scholar 

  30. V. I. Zabolotskii, K. V. Protasov, and M. V. Sharafan, Russ. J. Electrochem. 46, 979 (2010).

    Article  CAS  Google Scholar 

  31. V. I. Zabolotskii, V. F. Pis’menskii, O. A. Demina, and L. Novak, Russ. J. Electrochem. 49, 563 (2013).

    Article  CAS  Google Scholar 

  32. S. S. Melnikov, O. A. Mugtamov, and V. I. Zabolotsky, Sep. Purif. Technol. 235, 116198 (2020).

    Article  CAS  Google Scholar 

  33. A. V. Demin and V. I. Zabolotskii, Russ. J. Electrochem. 44, 1058 (2008).

    Article  CAS  Google Scholar 

  34. E. V. Nazyrova, N. A. Kononenko, S. A. Shkirskaya, and O. A. Demina, Membr. Membr. Technol. 4, 145 (2022).

    Article  CAS  Google Scholar 

  35. N. Berezina, N. Gnusin, O. Dyomina, and S. Timofeyev, J. Membr. Sci. 86, 207 (1994).

    Article  CAS  Google Scholar 

  36. H. L. Yeager, B. O' Dell, and Z. Twardowski, J. Electrochem. Soc. 129, 85 (1982).

    Article  CAS  Google Scholar 

  37. V. I. Zabolotskii, A. A. Shudrenko, and N. P. Gnusin, Elektrokhimiya 24, 744 (1988).

    CAS  Google Scholar 

  38. N. P. Berezina, S. A. Shkirskaya, M. V. Kolechko, et al., Russ. J. Electrochem. 47, 995 (2011).

    Article  CAS  Google Scholar 

  39. K. V. Protasov, S. A. Shkirskaya, N. P. Berezina, and V. I. Zabolotskii, Russ. J. Electrochem. 46, 1131 (2010).

    Article  CAS  Google Scholar 

  40. V. V. Kotov and V. A. Shaposhnik, Kolloid. Zh. 46, 1116 (1984).

    CAS  Google Scholar 

  41. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  42. I. Falina, N. Loza, S. Loza, et al., Membranes 11, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. T. Sata, T. Sata, and W. Yang, J. Membr. Sci. 206, 31 (2002).

    Article  CAS  Google Scholar 

  44. H. Farrokhzad, S. Darvishmanesh, G. Genduso, et al., Electrochim. Acta 158, 64 (2015).

    Article  CAS  Google Scholar 

  45. M. Kumar, M. A. Khan, AZ. Alothman, and M. R. Siddiqui, Desalination 325, 95 (2013).

    Article  CAS  Google Scholar 

  46. M. Reig, H. Farrokhzad, B. Van der Bruggen, et al., Desalination 375, 1 (2015).

    Article  CAS  Google Scholar 

  47. N. V. Loza, S. A. Loza, and N. A. Kononenko, RF Patent 2566415, 2015.

  48. M. Andreeva, N. Loza, N. Kutenko, and N. Kononenko, J. Solid State Electrochem. 24, 101 (2020).

    Article  CAS  Google Scholar 

  49. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. V. I. Zabolotsky, N. D. Pismenskaya, E. V. Laktionov, and V. V. Nikonenko, Desalination 107, 245 (1996).

    Article  CAS  Google Scholar 

  51. V. I. Zabolotskii, S. S. Mel’nikov, and O. A. Demina, Russ. J. Electrochem. 50, 32 (2014).

    Article  CAS  Google Scholar 

  52. M. A. Andreeva, N. V. Loza, N. D. Pis’menskaya, et al., Membranes 10, 145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. F. Li, Y. Jia, J. He, and M. Wang, J. Cleaner Prod. 320, 128760 (2021).

    Article  CAS  Google Scholar 

  54. Y. Lorrain, G. Pourcelly, and C. Gavach, J. Membr. Sci. 110, 181 (1996).

    Article  CAS  Google Scholar 

  55. M. Liu, J. Wang, J. Liu, et al., Polymer 268, 125721 (2023).

    Article  CAS  Google Scholar 

  56. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, et al., Russ. J. Phys. Chem. A 83, 107 (2009).

    Article  CAS  Google Scholar 

  57. O. A. Demina, N. A. Kononenko, and I. V. Falina, Pet. Chem. 54, 515 (2014).

    Article  CAS  Google Scholar 

  58. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  59. S. A. Shkirskaya, I. N. Senchikhin, N. A. Kononenko, and V. I. Roldugin, Russ. J. Electrochem. 53, 78 (2017).

    Article  CAS  Google Scholar 

  60. N. V. Loza, S. V. Dolgopolov, N. A. Kononenko, M. A. Andreeva, and Yu. S. Korshikova, Russ. J. Electrochem. 51, 538 (2015).

    Article  CAS  Google Scholar 

  61. M. A. Andreeva, N. V. Loza, N. D. Pis’menskaya, L. Dammak, and C. Larchet, Membranes 10, 145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (grant no. 18-38-20069 mol_a_ved).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Loza.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loza, S.A., Romanyuk, N.A., Falina, I.V. et al. Electrodialysis Separation and Selective Concentration of Sulfuric Acid and Nickel Sulfate Using Membranes Modified with Polyaniline. Membr. Membr. Technol. 5, 236–256 (2023). https://doi.org/10.1134/S2517751623040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623040030

Keywords:

Navigation