Skip to main content
Log in

Theory Research of Catalytic for Water-Gas Shift-Reaction by Copper Doping of TM Clusters (TM = Ag, Au)

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The catalytic activity of water-gas shift reaction catalyzed by Cu12TM (TM = Cu, Ag, Au) cluster is analyzed by density functional methods with the PBE. The mechanism of the reaction is divided into the redox mechanism and formate mechanism. Compared with the carboxyl mechanism, it turns out that: Cu12Au cluster performs the best catalytic activity in Cu12TM (TM = Cu, Ag, Au) cluster whether proceeds through the three mechanisms. Interestingly, the initial catalytic rate of CO and the final CO2 yield can be used to evaluate the catalytic activity of the mechanism. It is shown that catalyzed by Cu12Au cluster, the redox mechanism is become competitive due to the lower ratio and high value of TOF. The carboxyl mechanism is another alternative pathway is found to be competitive. Our findings should be very useful for improving the catalytic properties for the industrially reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ammal, S.C. and Heyden, A., ACS Catal., 2014, vol. 4, pp. 3654–3662.

    Article  Google Scholar 

  2. Oetjen, H.F., Schmidt, V.M., Stimming, U., and Trila, F., J. Electrochem. Soc., 1996, vol. 143, pp. 3838–3842.

    Article  Google Scholar 

  3. Storch, H.H., Golumbic, N., and Anderson, R.B., The Fischer-Tropsch and Related Syntheses, New York: John Wiley and Sons, 1951.

    Google Scholar 

  4. Wang, G.C., Shi, Q.Z., Yang, Z.Y., Sun, Y.H., Cai, Z.S., Pan, Y.M., and Zhao, X.Z., Acta Sci. Nat. Nankai Univ., 2001, vol. 34, no. 1, p. 41.

    Google Scholar 

  5. Gokhale, A.A., Dumesic, J.A., and Mavrikakis, M., J. Am. Chem. Soc., 2008, vol. 130, pp. 667–677.

    Google Scholar 

  6. Chen, C.S., Lai, Y.T., Lai, T.W., Wu, J.H., and Chen, C.H., ACS Catal., 2013, vol. 3, pp .667–677.

  7. Mendes, D., Chibante, V., Mendes, A., and Madeira, L.M., Ind. Eng. Chem. Res., 2010, vol. 49, pp. 11269–11279.

    Article  Google Scholar 

  8. Knudsen, J., Nilekar, A.U., Vang, R.T., Schnadt, J., Kunkes, E.L., Dumesic, J.A., Mavrikakis, M., and Besenbacher, F., J. Am. Chem. Soc., 2007, vol. 129, pp. 6485–6490.

    Article  Google Scholar 

  9. Gan, L.-Y., Tian, R.-U., Yang, X.-B., Lu, H.-D., and Zhao, Y.-J., J. Phys. Chem. C, 2012, vol. 116, pp. 745–752.

    Article  Google Scholar 

  10. Gokhale, A.A., Dumesic, J.A., and Mavrikakis, M., J. Am. Chem. Soc., 2008, vol. 130, pp. 1402–1414.

    Article  Google Scholar 

  11. Wang, G.-C. and Nakamura, J., J. Phys. Chem. Lett., 2010, vol. 1, pp. 3053–3057.

    Article  Google Scholar 

  12. Dietz, L., Piccinin, S., and Maestri, M., J. Phys. Chem. C, 2015, vol. 119, pp. 4959−4966.

    Article  Google Scholar 

  13. Cao, Z., Guo, L., Liu, N., An, X., and Li, A., Catal. Surv. Asia, 2016, vol. 20, pp. 63–73.

    Article  Google Scholar 

  14. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Revision C.01, Pittsburgh, PA: Gaussian Inc., 2010.

    Google Scholar 

  15. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, pp. 3865−3868.

    Article  Google Scholar 

  16. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, pp. 270–283.

    Article  Google Scholar 

  17. Peng, C.Y., Ayala, P.Y., Schleg, H.B., and Frisch, M.J., J. Comput. Chem., 1996, vol. 17, pp. 49–56.

    Article  Google Scholar 

  18. Gonzalez, C. and Schlegel, H.B., J. Chem. Phys., 1990, vol. 54, pp. 5523–5527.

    Article  Google Scholar 

  19. Lin, C.H., Chen, C.L., and Wang, J.H., J. Phys. Chem. C, 2011, vol. 115, p. 18582.

    Article  Google Scholar 

  20. Kozuch, S. and Shaik, S., J. Am. Chem. Soc., 2006, vol. 128, pp. 3355–3365.

    Article  Google Scholar 

  21. Kozuch, S. and Shaik, S., J. Phys. Chem. A., 2008, vol. 112, pp. 6032–6041.

    Article  Google Scholar 

  22. Kozuch, S. and Shaik, S., Acc. Chem. Res., 2010, vol. 44, pp. 101–110.

    Article  Google Scholar 

Download references

FUNDING

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, The Natural Science Foundation of Shanxi. Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant nos. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (WL2015CXCY-YJ-18), Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13) and funded by Graduate student innovation project of Shanxi Normal University. Graduate Student Innovation Project of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zijun Hao, Guo, S., Guo, L. et al. Theory Research of Catalytic for Water-Gas Shift-Reaction by Copper Doping of TM Clusters (TM = Ag, Au). Prot Met Phys Chem Surf 55, 252–258 (2019). https://doi.org/10.1134/S2070205119020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119020096

Keywords:

Navigation