Skip to main content
Log in

The effect of titanium support on the morphological properties of growth of titanium-oxide nanotubes and platinum deposit

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

It is shown that the thickness and structure of the layer of titanium-oxide nanotubes obtained by anodization of titanium foil in fluoride-containing solutions are determined by crystallographic orientation of surface metallic grains. In addition, this orientation appears when platinum deposits are applied onto nanooxide. Optical microimages in polarized light can be used for estimation of the quality of the crystallographic orientation of surface metallic grains, as well as for control of the thickness of oxide nanotubular layers. Shiny grains are characteristic for a nonuniformly (steplike) etched support with formation of a “humpy” light-scattering grain structure. Dull grains usually have the flat (0001) orientation; the process of nanotube growth occurs uniformly over the surface and is considerably hindered, which is probably related to the higher atomic density of the (0001) plane and protective properties of the barrier oxide. It is shown that TiO2 nanotubes are formed at a growing rate on bright grains and grains with the crystallographic orientation allowing formation of a thick oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghicov, A. and Schmuki, P, Chem. Commun., 2009, no. 20, p. 2791.

    Article  Google Scholar 

  2. Xiao, P., Garcia, B., Guo, Q., et al, Electrochem. Commun., 2007, vol. 9, p. 2441.

    Article  Google Scholar 

  3. Mor, G.K., Varghese, O.K., Paulose, M., et al, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, p. 2011.

    Article  Google Scholar 

  4. Do Mai Tkhyui and Mikhalenko, I.I, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, p. 934.

    Article  Google Scholar 

  5. Lebukhova, N.V., Rudnev, V.S., Kirichenko, E.A., Chigrin, P.G., Lukiyanchuk, I.V., and Yarovaya, T.P, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p. 1024.

    Article  Google Scholar 

  6. Korobov, I.I., Kalinnikov, G.V., Ivanov, A.V., Dremova, N.N., Andrievski, R.A., and Shilkin, S.P, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, p. 618.

    Article  Google Scholar 

  7. Vladimirov, A.B., Plotnikov, S.A., Trakhtenberg, I.Sh., et al, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, p. 230.

    Article  Google Scholar 

  8. Donachie, M.J., Titanium: A Technical Guide, Materials Park, OH: ASM Int., 2007.

    Google Scholar 

  9. Lu, K., Tian, Z., and Geldmeier, J.A, Electrochim. Acta, 2011, vol. 56, pp. 6014–6020.

    Article  Google Scholar 

  10. König, U. and Davepon, B, Electrochim. Acta, 2001, vol. 47, pp. 149–160.

    Article  Google Scholar 

  11. Davepon, B., Schultze, J.W., Konig, U., and Rosenkranz, C, Surf. Coat. Technol., 2003, vols. 169–170, pp. 85–90.

    Article  Google Scholar 

  12. Crawford, A. and Chawla, N, Scr. Mater., 2009, vol. 60, pp. 874–877.

    Article  Google Scholar 

  13. Leonardi, S., Bassi, A.L., Russo, V, Di Fonzo, F., Paschos, O., Murray, T.M., Efstathiadis, H. and Kunze, J, J. Phys. Chem. C, 2012, vol. 116, pp. 384–392.

    Article  Google Scholar 

  14. Koper, J.K. and Jakubowicz, J, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, pp. 295–303.

    Article  Google Scholar 

  15. Mao, M., Han, R., Zhao, R., Jiang, W., and Liang, B, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 3, pp. 500–511.

    Article  Google Scholar 

  16. Paramasivam, I., Macak, J.M., and Schmuci, P, Electrochem. Commun., 2008, vol. 10, pp. 71–75.

    Article  Google Scholar 

  17. Macak, J.M., Barczuk, P.J., and Tsuchiya, H, Electrochem. Commun., 2005, vol. 7, pp. 1417–1422.

    Article  Google Scholar 

  18. Babel, H.W. and Frederick, S.F., JOM, 1968, vol. 20, no. 10, pp. 32–38.

    Article  Google Scholar 

  19. Soon Hyung Kang, Jae Yup Kim, Hyun Sik Kim, et al, J. Ind. Eng. Chem., 2008, no. 14, p. 52.

    Article  Google Scholar 

  20. Inasaridze, L.N. and Balmasov, A.V, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, p. 523.

    Article  Google Scholar 

  21. Kotenev, V.A. and Tsivadze, A.Yu, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 4, pp. 472–486.

    Article  Google Scholar 

  22. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., et al, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, p. 1010.

    Article  Google Scholar 

  23. Petrunin, M.A, Maksaeva, L.B., Yurasova, T.A., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p. 964.

    Article  Google Scholar 

  24. Lozovaya, O.V., Tarasevich, M.R., Bogdanovskaya, V.A., Kasatkina, I.V., and Shcherbakov, A.I, Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 1, pp. 48–53.

    Article  Google Scholar 

  25. Shcherbakov, A.I., Kasatkina, I.V., Kasatkin, V.E., and Zolotarevskii, V.I, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, p. 195.

    Article  Google Scholar 

  26. Shcherbakov, A.I., Kasatkina, I.V., Zolotarevskii, V.I., Kotenev, V.A., Averin, A.A., and Tsivadze, A.Yu, Fizikokhim. Poverkhn. Zashch. Mater., 2015, vol. 51, no. 5, p. 517.

    Google Scholar 

  27. Shcherbakov, A.I., Kasatkina, I.V., Vysotskii, V.V., Averin, A.A., Kotenev, V.A., and Tsivadze, A.Yu, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p. 803.

    Article  Google Scholar 

  28. Young-Taeg Sul, Johansson, C.B, Yongsoo Jeong, and Albrektsson, T., Med. Eng. Phys., 2001, vol. 23, pp. 329–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kasatkina.

Additional information

Original Russian Text © I.V. Kasatkina, A.I. Shcherbakov, R.Kh. Zalavutdinov, V.N. Dorofeeva, V.V. Vysotskii, V.A. Kotenev, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 5, pp. 514–520.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasatkina, I.V., Shcherbakov, A.I., Zalavutdinov, R.K. et al. The effect of titanium support on the morphological properties of growth of titanium-oxide nanotubes and platinum deposit. Prot Met Phys Chem Surf 53, 841–846 (2017). https://doi.org/10.1134/S2070205117050070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117050070

Navigation