Skip to main content
Log in

Optimizing parameters affecting electroless Ni-P coatings on AZ91D magnesium alloy as corrosion protection barriers

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Magnesium alloys are materials difficult to plate due to their high reactivity. The surface passive layer formed in air or water must be first removed prior the plating process. Generally, it was shown that electroless Ni–P coatings on AZ91D alloy are directly related to its surface pretreatment parameters and the various plating conditions. Micro-image morphology and chemical composition of the different coats were characterized by SEM, EDX, XRF and XRD techniques. Electrochemical polarization, porosity and adhesion tests were also performed to study the corrosion resistance of the samples. The plating step was accomplished either after a zincating treatment or directly after the fluoride activation treatment using basic nickel plating bath. Successful direct EN coatings obtained are good corrosion barriers for AZ91D alloy in aggressive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y., Tan, C., Qi, G., et al., Corros. Sci., 2013, vol. 70, p. 229.

    Article  Google Scholar 

  2. Kainer, K.U., Srinivasan, P.B., Blawert, C., and Dietzel, W., in Shreir’s Corrosion, Cottis, R.A., Graham, M.J., Lindsay, R., et al., Eds., New York: Elsevier, 2010, vol. 3, p. 2011.

  3. Kuwahara, H., Al-Abdullat, Y., Ohta, M., et al., Mater. Sci. Forum, 2000, vol. 350, p. 349.

    Article  Google Scholar 

  4. Badar, M., Lünsdorf, H., Evertz, F., et al., Acta Biomater., 2013, vol. 9, p. 7580.

    Article  Google Scholar 

  5. Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G., Biomaterials, 2006, vol. 27, p. 1728.

    Article  Google Scholar 

  6. Mordike, B.L. and Ebert, T., Mater. Sci. Eng.: A, 2001, vol. 302, p. 37.

    Article  Google Scholar 

  7. Chen, J., Dong, J., Wang, J., et al., Corros. Sci., 2008, vol. 50, p. 3610.

    Article  Google Scholar 

  8. Pardo, A., Merino, M.C., Coy, A.E., et al., Corros. Sci., 2008, vol. 50, p. 823.

    Article  Google Scholar 

  9. El-Taib Heakal, F., Fekry, A.M., and Fatayerji, M.Z., Electrochim. Acta, 2009, vol. 54, p. 1545.

    Article  Google Scholar 

  10. Merino, M.C., Pardoa, A., Arrabal, R., et al., Corros. Sci., 2010, vol. 52, p. 1696.

    Article  Google Scholar 

  11. El-Taib Heakal, F., Fekry, A.M., and Fatayerji, M.Z., J. Appl. Electrochem., 2009, vol. 39, p. 583.

    Article  Google Scholar 

  12. El-Taib Heakal, F., Shehata, O.S., Tantawy, N.S., and Fekry, A.M., Int. J. Hydrogen Energy, 2012, vol. 37, p. 84.

    Article  Google Scholar 

  13. Dobos, D., Electrochemical Data: Handbook for Electrochemists in Industry and Universities, New York: Elsevier Sci., 1975, p. 243.

    Google Scholar 

  14. Huo, H., Li, Y., and Wang, F., Corros. Sci., 2004, vol. 46, p. 1467.

    Article  Google Scholar 

  15. Song, G.-L., Electrochim. Acta, 2010, vol. 55, p. 2258.

    Article  Google Scholar 

  16. Sudagar, J., Bi, G., Jiang, Z., et al., Int. J. Electrochem. Sci., 2011, vol. 6, p. 2767.

    Google Scholar 

  17. Gray, J.E. and Luan, B., J. Alloys Compd., 2002, vol. 336, p. 88.

    Article  Google Scholar 

  18. Huo, H., Li, Y., and Wang, F., Corros. Sci., 2004, vol. 46, p. 1467.

    Article  Google Scholar 

  19. Balaraju, J.N., Narayanan, T.S., and Seshadri, S.K., J. Appl. Electrochem., 2003, vol. 33, p. 807.

    Article  Google Scholar 

  20. Gu, C.D., Lian, J.S., Li, G.Y., et al., J. Alloys Compd., 2005, vol. 391, p. 104.

    Article  Google Scholar 

  21. Liu, Z. and Gao, W., Surf. Coat. Technol., 2006, vol. 200, p. 3553.

    Article  Google Scholar 

  22. Song, Y., Han, E.-H., Dong, K., et al., Corros. Sci., 2013, vol. 72, p. 133.

    Article  Google Scholar 

  23. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston, TX: National Association of Corrosion Engineers, 1974, p. 139.

    Google Scholar 

  24. El-Taib Heakal, F. and Fatayerji, M.Z., J. Solid State Electrochem., 2011, vol. 15, p. 125.

    Article  Google Scholar 

  25. Li-Ping, W., Jing-Jing, Z., Yong-Ping, X., and Zhong-Dong, Y., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, p. 630.

    Article  Google Scholar 

  26. Walker, C.T. and Walker, R.N., Electrodeposition Surf. Treat., 1970, vol. 1, p. 457.

    Article  Google Scholar 

  27. El Mahallawy, N., Bakkar, A., Shoeib, M., et al., Surf. Coat. Technol., 2008, vol. 202, p. 5151.

    Article  Google Scholar 

  28. Verdier, S., Laak, N., Delalande, S., et al., Appl. Surf. Sci., 2004, vol. 235, p. 513.

    Article  Google Scholar 

  29. Yang, L. and Luan, B., J. Electrochem. Soc., 2005, vol. 152, p. C474.

    Article  Google Scholar 

  30. El-Taib Heakal, F., Tantawy, N.S., and Shehata, O.S., Corros. Sci., 2012, vol. 64, p. 153.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakiha El-Taib Heakal.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heakal, F.ET., Shoeib, M.A. & Maanoum, M.A. Optimizing parameters affecting electroless Ni-P coatings on AZ91D magnesium alloy as corrosion protection barriers. Prot Met Phys Chem Surf 53, 177–187 (2017). https://doi.org/10.1134/S2070205116060095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116060095

Navigation