Skip to main content
Log in

Electrochemical performance of Mg–9Al–1Zn alloy in aqueous medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A systematic study on the corrosion and passivation behavior of AZ91D alloy in relation to the influence of concentration, temperature, pH, and immersion time was made in aqueous sulfate solution using electrochemical techniques including open-circuit potential, potentiodynamic polarization and impedance spectroscopy. It was found that the corrosion and pitting potentials (E corr and E pit) of the alloy drift to more active values with increasing either concentration (0.01–1.0 M) or temperature (278–338 K) of the test solution, suggesting that sulfate solution enhances the alloy dissolution, particularly at higher temperatures. On the other hand, values of the total film resistance (R T) indicate that neutral solution (pH 7.0) supports the formation of a better protective layer on AZ91D surface than alkaline (pH 12.5) or acidic (pH 1.0) medium. The growth of a protective film on the alloy surface at short immersion times (up to ∼50 h) is evinced by a rapid positive evolution of E corr and fast decrease in the corrosion rate (i corr). However, for a long-term exposure (up to 500 h) E corr drifts negatively and i corr increases due to breakdown of the protective film, which causes a decrease in the alloy stability. Fitting the impedance data to equivalent circuit models suitable to each behavior assisted to explore the mechanism for the attack of the sample surface at various testing times. The results obtained from the three studied electrochemical techniques are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Watarai H, January (2006) “Science & Technology Trends”, Quarterly Review No. 18

  2. Kainer KV (2003) Magnesium—alloys and technology. Wiley-VCH. KG aA, Weinheim

  3. Chen J, Wang J, Han E, Dong J, Ke W (2007) Electrochim Acta 52:3299

    Article  CAS  Google Scholar 

  4. Baril G, Blanc C, Keddam M, Pébère N (2003) J Electrochem Soc 150:B488

    Article  CAS  Google Scholar 

  5. Pilling N, Bedworth R (1923) J Inst Met 29:529

    Google Scholar 

  6. Hoey GR, Cohen M (1959) J Electrochem Soc 106:776

    Article  CAS  Google Scholar 

  7. Hara N, Kobayashi Y, Kagaya D, Akao N (2007) Corros Sci 49:166

    Article  CAS  Google Scholar 

  8. Wu G, Fan Y, Atrens A, Zhai C, Ding W (2008) J Appl Electrochem 38:251

    Article  CAS  Google Scholar 

  9. Ambat R, Aung NN, Zhou W (2000) J Appl Electrochem 30:865

    Article  CAS  Google Scholar 

  10. Inoue H, Sugahara K, Yamamoto A, Tsubakino H (2002) Corros Sci 44:603

    Article  CAS  Google Scholar 

  11. Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corros Sci 50:823

    Article  CAS  Google Scholar 

  12. Pébère N, Riera C, Dabosi F (1990) Electrochim Acta 35:555

    Article  Google Scholar 

  13. Chen J, Wang J, Han E, Dong J, Ke W (2005) Mater Corros 57:789

    Article  Google Scholar 

  14. Baril G, Pébère N (2001) Corros Sci 43:471

    Article  CAS  Google Scholar 

  15. Baril G, Blanc C, Pébère N (2001) J Electrochem Soc 148:B489

    Article  CAS  Google Scholar 

  16. Heakal FET, Fekry AM, Fatayerji MZ (2009) J Appl Electrochem 39:583

    Google Scholar 

  17. Heakal FET, Fekry AM, Fatayerji MZ (2009) Electrochim Acta 54:1545

  18. Pourbaix M, “Atlas of electrochemical equilibria in aqueous solutions”, (1974) National Association of Corrosion Engineers (NACE), pp 136–145 and pp 168–176

  19. Jüntter K (1990) Electrochim Acta 35:1501

    Article  Google Scholar 

  20. Macdonald JR (1987) Impedance spectroscopy, 3rd edn. Wiley, New York

    Google Scholar 

  21. Rammelt U, Reinhard G (1990) Electrochim Acta 35:1045

    Article  CAS  Google Scholar 

  22. Heakal FET, Fekry AM (2008) J Electrochem Soc 155:C534

  23. Mansfeld F, Kendig MW (1988) J Electrochem Soc 135:828

    Article  CAS  Google Scholar 

  24. Guo X-W, Chang J-W, He S-M, Ding W-J, Wang X (2007) Electrochim Acta 52:2570

    Article  CAS  Google Scholar 

  25. Ismail KM, Virtanen S (2007) Electrochem Solid-state Lett 10:C9

    Article  CAS  Google Scholar 

  26. Xia SJ, Yue R, Rateick RG Jr, Birss VI (2004) J Electrochem Soc 151:B179

    Article  CAS  Google Scholar 

  27. Heakal FET, Fekry AM, Ghoneim AA (2008) Corros Sci 50:1618

  28. Bedjoudi T, Fiaud C, Robbiola L (1993) Corrosion 49:738

    Article  Google Scholar 

  29. Brasher DM (1962) Nature 193:868

    Article  CAS  Google Scholar 

  30. Song G, Atrens A, Wu X, Zhang B (1998) Corros Sci 39:1769

    Article  Google Scholar 

  31. Ambat R, Aung NN, Zhou W (2000) Corros Sci 42:1433

    Article  CAS  Google Scholar 

  32. Anik M, Avci P, Tanverdi A, Celikyurek I, Baksan B, Gurler R (2006) Mater Des 27:347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakiha El-Taib Heakal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heakal, F.ET., Fatayerji, M.Z. Electrochemical performance of Mg–9Al–1Zn alloy in aqueous medium. J Solid State Electrochem 15, 125–138 (2011). https://doi.org/10.1007/s10008-010-1074-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1074-0

Keywords

Navigation