Skip to main content
Log in

Effect of P–Si Binary System on the Formation Mechanism of AZ91D MAO Coating

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To enhance the corrosion resistance of magnesium alloy while improving its surface roughness to enhance organic bonding, the single pulse micro-arc oxidation treatment was conducted on magnesium alloy specimens for a duration of 1200 seconds. The treatment employed a mixed electrolyte of Na3PO4/Na2SiO3 with varying proportions, aiming primarily to investigate the treatment mechanism. Voltage–time response curves were recorded throughout the entire process. Characterization of the bioceramic films was achieved through the application of SEM, XRD, and XPS techniques, elucidating phase formation, surface morphologies, elemental distribution, and chemical valence. Subsequently, measurements were taken to assess the porosity of the film layer, alterations in thickness, roughness, and the kinetic potential polarization curves. The experimental findings reveal that P and Si elements influence the performance of AZ91D MAO coating by affecting cascading discharge and channel blockage. When the concentration ratio of PO43−/SiO32− in the mixed electrolyte reached 0.02 mol L−1/0.08 mol L−1, the icorr of MAO coating measured 4.6391 μA cm−2, indicating better corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Liu, Y. Zhang, Y.L. Wang, Y.-Q. Tian, and L.-S. Chen: J. Alloys Compd., 2021, vol. 885, p. 161001.

    Article  CAS  Google Scholar 

  2. M. Kheradmandfard, M.H. Fathi, M. Ahangarian, and E.M. Zahrani: Ceram. Int., 2012, vol. 38, pp. 169–75.

    Article  CAS  Google Scholar 

  3. S. Singh, S. Kumar, and V. Khanna: Mater. Today Proc., 2023, vol. 201, p. 1.

    Google Scholar 

  4. C. Zhao, X. Wang, B. Yu, M. Cai, Q. Yu, and F. Zhou: Coatings, 2023, vol. 13, p. 7.

    Google Scholar 

  5. J. Yao, Y. Wang, W. Guolong, M. Sun, M. Wang, and Q. Zhang: Appl. Surf. Sci., 2019, vol. 479, pp. 727–37.

    Article  ADS  CAS  Google Scholar 

  6. H. Xing, R. Li, Y. Wei, B. Ying, D. Li, and Y. Qin: Front. Bioeng. Biotechnol., 2020, vol. 8, p. 367. https://doi.org/10.3389/fbioe.2020.00367.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Y.P. Sharkeev, M.B. Sedelnikova, T.V. Tolkacheva, N.A. Shcheglova, A.A. Panchenko, I.B. Krasovsky, M.V. Solomatina, M.V. Efimenko, V.V. Pavlov, L.A. Cherdantseva, and I.A. Kirilova: Traumatol. Orthop. Russia, 2020, vol. 26, pp. 109–19.

    Article  Google Scholar 

  8. Z. Wu, J. Luo, J. Zhang, H. Huang, Z. Xie, and X. Xie: Coatings, 2021, vol. 11, p. 6.

    Google Scholar 

  9. A.G. Rakoch, T. Van Tuan, Z.V. Khabibullina, C. Blawert, M. Serdechnova, N. Scharnagl, M.L. Zheludkevich, and A.A. Gladkova: Surf. Coat. Technol., 2022, vol. 433, 128075.

    Article  CAS  Google Scholar 

  10. V. Aubakirova, R. Farrakhov, V. Astanin, A. Sharipov, M. Gorbatkov, and E. Parfenov: Materials, 2022, vol. 15, p. 6.

    Article  Google Scholar 

  11. U. Malayoğlu, K.C. Tekin, U. Malayoğlu, and M. Belevi: Surf. Eng., 2019, vol. 36, pp. 800–08.

    Article  Google Scholar 

  12. K.M. Zaniolo, S.R. Biaggio, J.A. Cirelli, M.A. Cominotte, N. Bocchi, and R.C. Rocha-Filho: Mater. Res. Express, 2022, vol. 9, 025401.

    Article  ADS  Google Scholar 

  13. S.H. Cui, J.Y. Zhu, C. Yang, P.H. Chen, Z.C. Wu, Z.Y. Ma, R. Fu, X.B. Tian, D.N. Fang, and P.K. Chu: IEEE Trans. Plasma Sci., 2021, vol. 49, pp. 3126–31.

    Article  ADS  CAS  Google Scholar 

  14. D.D. Wang, X.T. Liu, Y. Wang, Q. Zhang, D. Li, X. Liu, H. Su, Y. Zhang, S. Yu, and D. Shen: Surf. Coat. Technol., 2020, vol. 402, p. 126349.

    Article  CAS  Google Scholar 

  15. E. Matykina, R. Arrabal, D.J. Scurr, A. Baron, P. Skeldon, and G.E. Thompson: Corros. Sci., 2010, vol. 52, pp. 1070–76.

    Article  CAS  Google Scholar 

  16. N. Ao, D.X. Liu, S.X. Wang, Q. Zhao, X. Zhang, and M. Zhang: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1071–76.

    Article  CAS  Google Scholar 

  17. R.Y. He, B.Y. Wang, J.H. Xiang, and T.J. Pan: J. Alloys Compd., 2021, vol. 889, 161501.

    Article  Google Scholar 

  18. E. Selvi, M. Kaba, F. Muhaffel, A.S. Vanlı, and M. Baydoğan: J. Tribol., 2023, vol. 145, p. 071701.

    Article  CAS  Google Scholar 

  19. H. Dong, Q. Li, D. Xie, W. Jiang, H. Ding, S. Wang, and L. An: Ceram. Int., 2023, vol. 49, pp. 32271–81.

    Article  CAS  Google Scholar 

  20. D. Zhai, X. Li, J. Shen, and K. Feng: Metall. Mater. Trans. A., 2022, vol. 53A, pp. 1200–07.

    Article  ADS  Google Scholar 

  21. D. Zhai, T. Qiu, J. Shen, and K. Feng: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 1991–99.

    Article  CAS  Google Scholar 

  22. X.D. Jiang and C.X. Pan: Handbook of Nanoceramic and Nanocomposite Coatings and Materials, Elsevier, Amsterdam, 2015, pp. 257–76.

    Book  Google Scholar 

  23. G. Mortazavi, J. Jiang, and E.I. Meletis: Appl. Surf. Sci., 2019, vol. 488, pp. 370–82.

    Article  ADS  CAS  Google Scholar 

  24. Y. Mori, A. Koshi, J. Liao, H. Asoh, and S. Ono: Corros. Sci., 2014, vol. 88, pp. 254–62.

    Article  CAS  Google Scholar 

  25. A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, and K.U. Kainer: Surf. Coat. Technol., 2008, vol. 202, pp. 3513–18.

    Article  CAS  Google Scholar 

  26. R.F. Zhang, S.F. Zhang, J.H. Xiang, L.H. Zhang, Y.Q. Zhang, and S.B. Guo: Surf. Coat. Technol., 2012, vol. 206, pp. 5072–79.

    Article  CAS  Google Scholar 

  27. Z.J. Jia, M. Li, Q. Liu, X.C. Xu, Y. Cheng, Y.F. Zheng, T.F. Xi, and S.C. Wei: Appl. Surf. Sci., 2014, vol. 292, pp. 1030–39.

    Article  ADS  CAS  Google Scholar 

  28. B. Yang, Y.F. Feng, Y.L. Yu, S. He, H. Liu, L. Xue, and L. Yang: Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 22010–11.

    Article  CAS  Google Scholar 

  29. L.Y. Liu, C.H. Zhang, S.R. Chen, L. Ma, Y. Li, and Y. Lu: Chemosphere, 2021, vol. 286, p. 131773.

    Article  PubMed  Google Scholar 

  30. M. Moulavi, K. Kanade, D. Amalnerkar, A. Fatehmulla, and M.A. Manthrammel: Arab. J. Chem., 2021, vol. 14, 103134.

    Article  CAS  Google Scholar 

  31. W. Zai, Y.C. Su, H.C. Man, J.S. Lian, and G. Li: Appl. Surf. Sci., 2019, vol. 492, pp. 314–27.

    Article  ADS  Google Scholar 

  32. Ni. Ao, D. Liu, S. Wang, Q. Zhao, X. Zhang, and M. Zhang: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1071–76.

    Article  CAS  Google Scholar 

  33. Ni. Ao, D. Liu, X. Zhang, and G. He: J. Alloys Compd., 2020, vol. 823, 153823.

    Article  CAS  Google Scholar 

  34. J.-X. Han, Y.-L. Cheng, Tu. Wen-bin, T.-Y. Zhan, and Y.-L. Cheng: Appl. Surf. Sci., 2018, vol. 428, pp. 684–97.

    Article  ADS  CAS  Google Scholar 

  35. V.K. Truong, R. Lapovok, Y.S. Estrin, S. Rundell, J.Y. Wang, C.J. Fluke, R.J. Crawford, and E.P. Ivanova: Biomaterials, 2010, vol. 31, pp. 3674–83.

    Article  CAS  PubMed  Google Scholar 

  36. G. Song, A. Atrens, D. St John, X. Wu, and J. Nairn: Corros. Sci., 1997, vol. 39, pp. 1981–2004.

    Article  CAS  Google Scholar 

  37. A. Atrens and W. Dietzel: Adv. Eng. Mater., 2007, vol. 9, pp. 292–97.

    Article  CAS  Google Scholar 

  38. Li. Wang, Li. Chen, Z. Yan, H. Wang, and J. Peng: J. Alloys Compd., 2009, vol. 480, pp. 469–74.

    Article  CAS  Google Scholar 

  39. L. Chen and Su. Ray Kai Leung: Constr. Build. Mater., 2021, vol. 267, 121003.

    Article  Google Scholar 

  40. J. Liang, L.T. Hu, and J.C. Hao: Appl. Surf. Sci., 2007, vol. 253, pp. 4490–96.

    Article  ADS  CAS  Google Scholar 

  41. A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, and K.U. Kainer: Surf. Coat. Technol., 2010, vol. 204, pp. 1469–78.

    Article  CAS  Google Scholar 

  42. X. Lu, C. Blawert, K.U. Kainer, and M.L. Zheludkevich: Electrochim. Acta, 2016, vol. 196, pp. 680–91.

    Article  CAS  Google Scholar 

  43. M.P. Kamil, M. Kaseem, Y.H. Lee, and Y.G. Ko: J. Alloys Compd., 2017, vol. 707, pp. 167–71.

    Article  CAS  Google Scholar 

  44. D.S. Tsai and C.C. Chou: Coatings, 2021, vol. 11, p. 270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Fundamental Research Funds for the Central Universities of China (Grant No. 2022CDJQY-014), 2022 Jiangsu Provincial Science and technology plan special fund BE2022110 (key research and development plan, industry prospect and key core technology), the China Postdoctoral Science Foundation (Grant No. 2021M700569) and Chongqing Postdoctoral Science Foundation (Grant No. cstc2021jcyj-bshX0087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, G., Li, X. et al. Effect of P–Si Binary System on the Formation Mechanism of AZ91D MAO Coating. Metall Mater Trans A 55, 1229–1242 (2024). https://doi.org/10.1007/s11661-024-07322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07322-x

Navigation