Skip to main content
Log in

Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: a Review

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The review covers the modern trends in the field of biodiesel production from microalgal biomass. It represents the data on the most promising strains of microalgae as the lipid producers. The influence of various medium components, temperature, pH and illumination intensity on microalgae biomass composition, lipid accumulation and their metabolism is observed. Among the substrates used for the cultivation of microalgae, wastewater is the most promising one. Approaches to obtaining biodiesel from microalgae lipids using biocatalytic transesterification with various lipases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Niphadkar, S., Bagade, P., and Ahmed, S., Biofuels, 2018, vol. 9, no. 2, pp. 229–238.

    Article  CAS  Google Scholar 

  2. Adenle, A.A., Haslam, G.E., and Lee, L., Energy Policy, 2013, vol. 61, pp. 182–195.

    Article  CAS  Google Scholar 

  3. Sorokina, K.N., Samoylova, Y.V., Piligaev, A.V., Sivakumar, U., and Parmon, V.N., Catal. Ind., 2017, vol. 9, no. 3, pp. 264–269.

    Article  Google Scholar 

  4. Sorokina, K.N., Samoylova, Y.V., Piligaev, A.V., Sivakumar, U., and Parmon, V.N., Catal. Ind., 2017, vol. 9, no. 3, pp. 270–276.

    Article  Google Scholar 

  5. Alam, F., Date, A., Rasjidin, R., Mobin, S., Moria, H., and Baqui, A., Procedia Eng., 2012, vol. 49, pp. 221–227.

    Article  CAS  Google Scholar 

  6. Efremenko, E.N., Nikol’skaya, A.B., Mamedova, F.T., Sen’ko, O.V., and Trusov, L.I., Al’tern.Energ. Ekol., 2013, vol. 119, no. 2, pp. 44–49.

    Google Scholar 

  7. Carvalho, A.P., Meireles, L.A., and Malcata, F.X., Biotechnol. Prog., 2006, vol. 22, no. 6, pp. 1490–1506.

    Article  CAS  PubMed  Google Scholar 

  8. Sorokina, K.N., Yakovlev, V.A., Piligaev, A.V., Kukushkin, R.G., Pel’tek, S.E., Kolchanov, N.A., and Parmon, V.N., Catal. Ind., 2012, vol. 4, no. 3, pp. 202–208.

    Article  Google Scholar 

  9. Biello, D., Sci. Am., 2011, vol. 305, no. 2, pp. 58–65.

    Article  PubMed  Google Scholar 

  10. Lundquist, T J., Woertz, I.C., Quinn, N.W.T., and Benemann, J.R., A Realistic Technology and Engineering Assessment of Algae Biofuel Production, Berkeley, CA: Energy Biosciences Institute, 2010. https://digitalcommons. calpoly.edu/cgi/viewcontent.cgi?referer=https://scholar. google.com/&httpsredir=1&article=1189&context= cenv_fac. Cited October 3, 2019.

  11. Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., and Chang, J.-S., Bioresour. Technol., 2011, vol. 102, no. 1, pp. 71–81.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C.W., Park, M.S., and Yang, J.-W., Biotechnol. Adv., 2013, vol. 31, no. 6, pp. 862–876.

    Article  CAS  PubMed  Google Scholar 

  13. Andersen, R.A., Biodiversity Conserv., 1992, vol. 1, no. 4, pp. 267–292.

    Article  Google Scholar 

  14. Piligaev, A.V., Sorokina, K.N., Bryanskaya, A.V., Demidov, E.A., Kukushkin, R.G., Kolchanov, N.A., Parmov, V.N., and Pel’tek, S.E., Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 6, pp. 487–492.

    Article  Google Scholar 

  15. Schlichting, H.E., Trans. Am. Microsc. Soc., 1974, vol. 93, no. 4, pp. 610–613.

    Article  PubMed  Google Scholar 

  16. Chisti, Y., Biotechnol. Adv., 2007, vol. 25, no. 3, pp. 294–306.

    Article  CAS  PubMed  Google Scholar 

  17. Mata, T.M., Martins, A.A., and Caetano, N.S., Renewable Sustainable Energy Rev., 2010, vol. 14, no. 1, pp. 217–232.

    Article  CAS  Google Scholar 

  18. Klok, A.J., Lamers, P.P., Martens, D.E., Draaisma, R.B., and Wijffels, R.H., Trends Biotechnol., 2014, vol. 32, no. 10, pp. 521–528.

    Article  CAS  PubMed  Google Scholar 

  19. Simionato, D., Block, M.A., La Rocca, N., Jouhet, J., Maréchal, E., Finazzi, G., and Morosinotto, T., Eukaryotic Cell, 2013, vol. 12, no. 5, pp. 665–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Narayanan, G., Kumar, G., Seepana, S., Elankovan, R., Arumugan, S., and Premalatha, M., Biocatal. Agric. Biotechnol., 2018, vol. 14, pp. 357–365.

    Article  Google Scholar 

  21. Zhu, L.D., Li, Z.H., and Hiltunen, E., BioMed Res. Int., 2016, vol. 2016. https://doi.org/10.1155/2016/8792548

    CAS  Google Scholar 

  22. Talebi, A.F., Tohidfar, M., Mousavi Derazmahalleh, S.M., Sulaiman, A., Baharuddin, A.S., and Tabatabaei, M., BioMed Res. Int., 2015, vol. 2015. https://doi.org/10.1155/2015/597198

    Article  CAS  Google Scholar 

  23. Knothe, G., Energy Fuels, 2012, vol. 26, no. 8, pp. 5265–5273.

    Article  CAS  Google Scholar 

  24. Piligaev, A.V., Sorokina, K.N., Bryanskaya, A.V., Peltek, S.E., Kolchanov, N.A., and Parmon, V.N., Algal Res., 2015, vol. 12, pp. 368–376.

    Article  Google Scholar 

  25. Johnson, D.A., Sprague, S., FY 1987 Aquatic Species Program Overview, Golden, CO: Solar Energy Research Institute, 1987.

    Book  Google Scholar 

  26. Chu, W.-L., Eur. J. Phycol., 2017, vol. 52, no. 4, pp. 419–437.

    Article  CAS  Google Scholar 

  27. Singh, S.P. and Singh, P., Renewable Sustainable Energy Rev., 2015, vol. 50, pp. 431–444.

    Article  CAS  Google Scholar 

  28. Varshney, P., Beardall, J., Bhattacharya, S., and Wangikar, P.P., Algal Res., 2018, vol. 30, pp. 28–37.

    Article  Google Scholar 

  29. Kalacheva, G.S., Zhila, N.O., Volova, T.G., and Gladyshev, M.I., Microbiology, 2002, vol. 71, no. 3, pp. 286–293.

    Article  CAS  Google Scholar 

  30. Weisse, T. and Stadler, P., Limnol. Oceanogr., 2006, vol. 51, no. 4, pp. 1708–1715.

    Article  CAS  Google Scholar 

  31. Ňancucheo, I. and Johnson, B.D., Front. Microbiol., 2012, vol. 3. https://doi.org/10.3389/fmicb.2012.00325

  32. Schulze, P.S.C., Pereira, H.G.C., Santos, T.F.C., Schueler, L., Guerra, R., Barreira, L.A., Perales, J.A., and Varela, J.C.S., Algal Res., 2016, vol. 16, pp. 387–398.

    Article  Google Scholar 

  33. Kim, G., Mujtaba, G., and Lee, K., Algae, 2016, vol. 31, no. 3, pp. 257–266.

    Article  CAS  Google Scholar 

  34. Li, T., Wan, L., Li, A., and Zhang, C., Chin. J. Oceanol. Limnol., 2013, vol. 31, no. 6, pp. 1306–1314.

    Article  CAS  Google Scholar 

  35. Ho, S.-H., Chen, C.-Y., and Chang, J.-S., Bioresour. Technol., 2012, vol. 113, pp. 244–252.

    Article  CAS  PubMed  Google Scholar 

  36. Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-Beisson, Y., and Peltier, G., BMC Biotechnol., 2011, vol. 11. http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-11-7

  37. Tsuzuki, M., Ohnuma, E., Sato, N., Takaku, T., and Kawaguchi, A., Plant Physiol., 1990, vol. 93, no. 3, pp. 851–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen, Z.-Y. and Chen, F., J. Ind. Microbiol. Biotechnol., 2000, vol. 25, no. 4, pp. 218–224.

    Article  CAS  Google Scholar 

  39. Zhan, J., Hong, Y., and Hu, H., J. Microbiol. Biotechnol., 2016, vol. 26, no. 7, pp. 1290–1302.

    Article  CAS  PubMed  Google Scholar 

  40. Adenan, N.S., Yusoff, F.M., Medipally, S.R., and Shariff, M., J. Environ. Biol., 2016, vol. 37, pp. 669–676.

    CAS  PubMed  Google Scholar 

  41. Liang, K., Zhang, Q., Gu, M., and Cong, W., J. Appl. Phycol., 2013, vol. 25, no. 1, pp. 311–318.

    Article  CAS  Google Scholar 

  42. Belotti, G., Bravi, M., de Caprariis, B., de Filippis, P., and Scarsella, M., Am. J. Plant Sci., 2013, vol. 4, no. 12, pp. 44–51.

    Article  CAS  Google Scholar 

  43. Li, Y., Han, F., Xu, H., Mu, J., Chen, D., Feng, B., and Zeng, H., Bioresour. Technol., 2014, vol. 174, pp. 24–32.

    Article  CAS  PubMed  Google Scholar 

  44. Wan, M., Jin, X., Xia, J., Rosenberg, J.N., Yu, G., Nie, Z., Oyler, G.A., and Betenbaugh, M.J., Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 22, pp. 9473–9481.

    Article  CAS  PubMed  Google Scholar 

  45. Rizwan, M., Mujtaba, G., and Lee, K., Biotechnol. Bioprocess Eng., 2017, vol. 22, no. 1, pp. 68–75.

    Article  CAS  Google Scholar 

  46. Liu, Z.-Y., Wang, G.-C., and Zhou, B.-C., Bioresour. Technol., 2008, vol. 99, no. 11, pp. 4717–4722.

    Article  CAS  PubMed  Google Scholar 

  47. Elenkov, I., Stefanov, K., Dimitrova-Konaklieva, S., and Popov, S., Phytochemistry, 1996, vol. 42, no. 1, pp. 39–44.

    Article  CAS  Google Scholar 

  48. Peeler, T.C., Stephenson, M.B., Einspahr, K.J., and Thompson, G.A., Plant Physiol., 1989, vol. 89, no. 3, pp. 970–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, X.-Q. and Beardall, J., Phytochemistry, 1997, vol. 45, no. 4, pp. 655–658.

    Article  CAS  Google Scholar 

  50. Drobetskaya, I.V., Ekol. Morya, 2002, vol. 60, pp. 53–59.

    Google Scholar 

  51. De-Bashan, L.E., Magallon, P., Antoun, H., and Bashan, Y., J. Phycol., 2008, vol. 44, no. 5, pp. 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  52. Smolov, A.P., Semenova, G.A., Minakova, N.Yu., Butanaev, A.M., and Shirshikova, G.N., Russ. J. Plant Physiol., 2012, vol. 59, no. 6, pp. 828–832.

    Article  CAS  Google Scholar 

  53. Fan, J., Andre, C., and Xu, C., FEBS Lett., 2011, vol. 585, no. 12, pp. 1985–1991.

    Article  CAS  PubMed  Google Scholar 

  54. Sun, Z., Chen, Y.-F., and Du, J., Plant Biotechnol. J., 2016, vol. 14, no. 2, pp. 557–566.

    Article  CAS  PubMed  Google Scholar 

  55. Patil, L. and Kaliwal, B., Appl. Biochem. Biotechnol., 2017, vol. 182, no. 1, pp. 335–348.

    Article  CAS  PubMed  Google Scholar 

  56. Mühlroth, A., Winge, P., El Assimi, A., Jouhet, J., Maréchal, E., Hohmann-Marriott, M.F., Vadstein, O., and Bones, A.M., Plant Physiol., 2017, vol. 175, no. 4, pp. 1543–1559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Satoh, K., Smith, C.M., and Fork, D.C., Plant Physiol., 1983, vol. 73, no. 3, pp. 643–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Das, D., Algal Biorefinery: An Integrated Approach, New York: Springer, 2015.

    Book  Google Scholar 

  59. Mamedova, F.T., Nikol’skaya, A.B., and Efremenko, E.N., Vestn. Kuzbasskogo Gos. Tekh. Univ., 2013, vol. 95, no. 1, pp. 113–115.

    Google Scholar 

  60. Sen’ko, O.V., Gladchenko, M.A., Lyagin, I.V., Nikol’skaya, A.B., Maslova, O.V., Chernova, N.I., Kise-leva, S.V., Korobkova, T.P., Efremenko, E.N., and Varfolomeev, S.D., Al’tern.Energ. Ekol., 2012, vol. 3, pp. 89–94.

    Google Scholar 

  61. Abdel-Raouf, N., Al-Homaidan, A.A., and Ibraheem, I.B.M., Saudi J. Biol. Sci., 2012, vol. 19, no. 3, pp. 257–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. De-Bashan, L.E. and Bashan, Y., Bioresour. Technol., 2010, vol. 101, no. 6, pp. 1611–1627.

    Article  CAS  PubMed  Google Scholar 

  63. Rasalingam, S., Peng, R., and Koodali, R.T., J. Nanomater., 2014, vol. 2014. https://doi.org/10.1155/2014/617405

    Article  CAS  Google Scholar 

  64. Cho, D.-H., Choi, J.-W., Kang, Z., Kim, B.-H., Oh, H.-M., Kim, H.-S., and Ramanan, R., Sci. Rep., 2017, vol. 7. https://www.nature.com/articles/s41598-017-02139-8.pdf. Cited October 4, 2019.

  65. Yu, J.-U. and Kim, H.-W., Water, Air, Soil Pollut., 2017, vol. 228, no. 9, p. 357.

    Article  CAS  Google Scholar 

  66. Muñoz, R. and Guieysse, B., Water Res., 2006, vol. 40, no. 15, pp. 2799–2815.

    Article  PubMed  CAS  Google Scholar 

  67. Ge, S., Champagne, P., Plaxton, W.C., Leite, G.B., and Marazzi, F., Biofuels, Bioprod. Biorefin., 2017, vol. 11, no. 2, pp. 325–343.

    Article  CAS  Google Scholar 

  68. Lu, W., Wang, Z., Wang, X., and Yuan, Z., Bioresour. Technol., 2015, vol. 192, pp. 382–388.

    Article  CAS  PubMed  Google Scholar 

  69. Kong, Q.-X., Li, L., Martinez, B., Chen, P., and Ruan, R., Appl. Biochem. Biotechnol., 2010, vol. 160, no. 1, pp. 9–18.

    Article  CAS  PubMed  Google Scholar 

  70. Abou-Shanab, R.A.I., El-Dalatony, M.M., El-Sheekh, M.M., Ji, M.-K., Salama, E.-S., Kabra, A.N., and Jeon, B.-H., Biotechnol. Bioprocess Eng., 2014, vol. 19, no. 3, pp. 510–518.

    Article  CAS  Google Scholar 

  71. Piligaev, A.V., Sorokina, K.N., Shashkov, M.V., and Parmon, V.N., Bioresour. Technol., 2018, vol. 250, pp. 538–547.

    Article  CAS  PubMed  Google Scholar 

  72. Hena, S., Abida, N., and Tabassum, S., RSC Adv., 2015, vol. 5, no. 120, pp. 98805–98813.

    Article  CAS  Google Scholar 

  73. Shaha, S.M.U., Ahmada, A., Othmanb, M.F., and Abdullah, M.A., Chem. Eng. Trans., 2014, vol. 37, pp. 733–738.

    Google Scholar 

  74. Samoilova, Yu.V., Sorokina, K.N., Piligaev, A.V., and Parmon, V.N., Catal. Ind., 2019, vol. 11, no. 2, pp. 168–178.

    Article  Google Scholar 

  75. Fjerbaek, L., Christensen, K.V., and Norddahl, B., Biotechnol. Bioeng., 2009, vol. 102, no. 5, pp. 1298–1315.

    Article  CAS  PubMed  Google Scholar 

  76. Freedman, B., Pryde, E.H., and Mounts, T.L., J. Am. Oil Chem. Soc., 1984, vol. 61, no. 10, pp. 1638–1643.

    Article  CAS  Google Scholar 

  77. Sorokina, K.N., Samoilova, Yu.V., Piligaev, A.V., Tulupov, A.A., and Parmon, V.N., Primenenie biotekhnologii dlya pererabotki lipidov rastitel’nogo proiskhozhdeniya v tsennye produkty i ikh vliyanie na zdorov’e cheloveka (Application of Biotechnology for the Conversion of Plant Derived Lipids into Valuable Products and Their Effect on Human Health), Novosibirsk: Novosib. Gos. Univ., 2017.

  78. Samoylova, Y.V., Piligaev, A.V., Sorokina, K.N., Rozanov, A.S., Peltek, S.E., Novikov, A.A., Almyasheva, N.R., and Parmon, V.N., Catal. Ind., 2016, vol. 8, no. 2, pp. 187–193.

    Article  Google Scholar 

  79. Samoylova, Y.V., Piligaev, A.V., Sorokina, K.N., and Parmon, V.N., Catal. Ind., 2017, vol. 9, no. 1, pp. 62–70.

    Article  Google Scholar 

  80. Samoylova, Y.V., Sorokina, K.N., and Parmon, V.N., Catal. Ind., 2016, vol. 8, no. 4, pp. 348–353.

    Article  Google Scholar 

  81. Bajaj, A., Lohan, P., Jha, P.N., and Mehrotra, R., J. Mol. Catal. B: Enzym., 2010, vol. 62, no. 1, pp. 9–14.

    Article  CAS  Google Scholar 

  82. Samoylova, Yu.V., Sorokina, K.N., Piligaev, A.V., and Parmon, V.N., Catalysts, 2018, vol. 8, no. 4. https://doi.org/10.3390/catal8040154

    Article  CAS  Google Scholar 

  83. Samoylova, Yu.V., Sorokina, K.N., Romanenko, M.V., and Parmon, V.N., Extremophiles, 2018, vol. 22, no. 2, pp. 271–285.

    Article  CAS  PubMed  Google Scholar 

  84. Adlercreutz, P., Chem. Soc. Rev., 2013, vol. 42, no. 15, pp. 6406–6436.

    Article  CAS  PubMed  Google Scholar 

  85. de Almeida, G.F., de Araújo, P.H.F., Florentino, A.C., Bezerra, R.M., Carvalho, J.C.T., Faustino, S.M.M., and Ferreira, I.M., Quím. Nova, 2018, vol. 41, no. 1, pp. 1–4.

    CAS  Google Scholar 

  86. Amoah, J., Ho, S.-H., Hama, S., Yoshida, A., Nakanishi, A., Hasunuma, T., Ogino, C., and Kondo, A., Algal Res., 2017, vol. 28, pp. 16–23.

    Article  Google Scholar 

  87. Kim, S.W., Xiao, M., and Shin, H.-J., Biotechnol. Bioprocess Eng., 2016, vol. 21, no. 6, pp. 743–750.

    Article  CAS  Google Scholar 

  88. Navarro López, E., Robles Medina, A., González Moreno, P. A., Esteban Cerdán, L., Molina Grima, E., Bioresour. Technol., 2016, vol. 216, pp. 904–913.

    Article  PubMed  CAS  Google Scholar 

  89. Tran, D.-T., Chen, C.-L., and Chang, J.-S., Bioresour. Technol., 2013, vol. 135, pp. 213–221.

    Article  CAS  PubMed  Google Scholar 

  90. Kim, K.H., Lee, O.K., Kim, C.H., Seo, J.-W., Oh, B.-R., and Lee, E.Y., Bioresour. Technol., 2016, vol. 211, pp. 472–477.

    Article  CAS  PubMed  Google Scholar 

  91. Sivaramakrishnan, R. and Incharoensakdi, A., Fuel, 2017, vol. 191, pp. 363–370.

    Article  CAS  Google Scholar 

  92. Bautista, L.F., Vicente, G., Mendoza, Á., González, S., and Morales, V., Energy Fuels, 2015, vol. 29, no. 8, pp. 4981–4989.

    Article  CAS  Google Scholar 

  93. Bayramoglu, G., Akbulut, A., Ozalp, V.C., and Arica, M.Y., Chem. Eng. Res. Des., 2015, vol. 95, pp. 12–21.

    Article  CAS  Google Scholar 

  94. Lai, J.-Q., Hu, Z.-L., Wang, P.-W., and Yang, Z., Fuel, 2012, vol. 95, pp. 329–333.

    Article  CAS  Google Scholar 

  95. Piligaev, A.V., Sorokina, K.N., Samoylova, Y.V., and Parmon, V.N., Energy Convers. Manage., 2018, vol. 156, pp. 1–9.

    Article  CAS  Google Scholar 

  96. Guldhe, A., Singh, P., Kumari, S., Rawat, I., Permaul, K., and Bux, F., Renewable Energy, 2016, vol. 85, pp. 1002–1010.

    Article  CAS  Google Scholar 

  97. Huang, J., Xia, J., Jiang, W., Li, Y., and Li, J., Bioresour. Technol., 2015, vol. 180, pp. 47–53.

    Article  CAS  PubMed  Google Scholar 

  98. Amoah, J., Ho, S.-H., Hama, S., Yoshida, A., Nakanishi, A., Hasunuma, T., Ogino, C., and Kondo, A., Biochem. Eng. J., 2016, vol. 105, part A, pp. 10–15.

  99. Teo, C.L., Jamaluddin, H., Zain, N.A.M., and Idris, A., Renewable Energy, 2014, vol. 68, pp. 1–5.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed with the financial support of Russian scientific Foundation (project no. 17-73-30 032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Piligaev, K. N. Sorokina, Yu. V. Samoylova or V. N. Parmon.

Ethics declarations

This paper was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piligaev, A.V., Sorokina, K.N., Samoylova, Y.V. et al. Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: a Review. Catal. Ind. 11, 349–359 (2019). https://doi.org/10.1134/S207005041904007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005041904007X

Keywords:

Navigation