Catalysis in Industry

, Volume 10, Issue 1, pp 29–40 | Cite as

Hydrocracking of Vacuum Gasoil on NiMo/AAS-Al2O3 Catalysts Prepared from Citric Acid: Effect of the Catalyst Heat Treatment Temperature

  • P. P. Dik
  • K. A. Nadeina
  • M. O. Kazakov
  • O. V. Klimov
  • E. Yu. Gerasimov
  • I. P. Prosvirin
  • A. S. Noskov
Catalysis in Petroleum Refining Industry


Ni-Mo bimetallic catalysts are prepared by impregnating a carrier containing amorphous aluminosilicate (AAS) and aluminum oxide using a solution with Ni, Mo, and citric acid. The temperature of the catalysts ranges from 120 to 550°С. The physicochemical properties of the catalysts are studied via XPS, TEM, and HCNS analysis, and they are tested in hydrocracking of vacuum gasoil. The particles of the sulfide active component (NiMoS phase) are localized predominantly on surfaces of aluminum oxide, and only some are on surfaces of AAS. When the temperature of catalyst calcination is raised, the average number of the layers in particles of the NiMoS phase grows as well, due to the removal of citric acid. This indicates strengthening of the interaction between the sulfide active component and aluminum oxide. The content of Ni-Mo massive sulfide particles also grows along with the temperature of calcination. The morphological characteristics of the sulfide active component affect the activity of the catalysts in hydrodesulfurization and hydrodenitrogenation, but not in hydrocracking. The optimum heat treatment temperature for NiMo/AAS-Al2O3 catalysts prepared with citric acid is 120°C. Recommendations are given for the heat treatment of catalysts under industrial conditions.


hydrocracking diesel fraction catalyst amorphous aluminosilicate citric acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mills, G.A., Heinemann, H., and Milliken, T.H., and Oblad, A.G., Ind. Eng. Chem., 1953, vol. 45, no. 1, pp. 134–137.CrossRefGoogle Scholar
  2. 2.
    Weisz, P.B., Adv. Catal., 1962, vol. 13, pp. 137–190.Google Scholar
  3. 3.
    Beuther, H. and Larson, O.A., Ind. Eng. Chem. Process Des. Dev., 1965, vol. 4, no. 2, pp. 177–181.CrossRefGoogle Scholar
  4. 4.
    Osipov, L.N., Agafonov, A.V., Khavkin, V.A., and Rogov, S.P., Chem. Technol. Fuels Oils, 1965, vol. 1, no. 8, pp. 581–585.CrossRefGoogle Scholar
  5. 5.
    Wiwel, P., Hinnemann, B., Hidalgo-Vivas, A., Zeuthen, P., Petersen, B.O., and Duus, J.Ø., Ind. Eng. Chem. Res., 2010, vol. 49, no. 7, pp. 3184–3193.CrossRefGoogle Scholar
  6. 6.
    Sau, M., Basak, K., Manna, U., Santra, M., and Verma, R.P., Catal. Today, 2005, vol. 109, nos. 1–4, pp. 112–119.CrossRefGoogle Scholar
  7. 7.
    Breysse, M., Berhault, G., Kasztelan, S., Lacroix, M., Maugé, F., and Perot, G., Catal. Today, 2001, vol. 66, no. 1, pp. 15–22.CrossRefGoogle Scholar
  8. 8.
    Topsøe, N.Y., Topsøe, H, and Massoth, F.E., J. Catal., 1989, vol. 119, no. 1, pp. 252–255.CrossRefGoogle Scholar
  9. 9.
    Kumaran, G.M., Garg, S., Kumar, M., Viswanatham, N., Gupta, J.K., Sharma, L.D., and Dhar, G.M., Energy Fuels, 2006, vol. 20, no. 6, pp. 2308–2313.CrossRefGoogle Scholar
  10. 10.
    Roussel, M., Lemberton, J.L., Guisnet, M., Cseri, T., and Benazzi, E., J. Catal., 2003, vol. 218, no. 2, pp. 427–437.CrossRefGoogle Scholar
  11. 11.
    Al-Dalama, K. and Stanislaus, A., Thermochim. Acta, 2011, vol. 520, nos. 1–2, pp. 67–74.CrossRefGoogle Scholar
  12. 12.
    Escobar, J., Barrera, M.C., de los Reyes, J.A., Toledo, J.A., Santes, V., and Colín, J.A., J. Mol. Catal. A: Chem., 2008, vol. 287, nos. 1–2, pp. 33–40.CrossRefGoogle Scholar
  13. 13.
    Van Veen, J.A.R., Colijn, H.A., Hendriks, P.A.J.M., and van Welsenes, A.J., Fuel Process. Technol., 1993, vol. 35, nos. 1–2, pp. 137–157.CrossRefGoogle Scholar
  14. 14.
    Escobar, J., Toledo, J.A., Gutiérrez, A.W., Barrera, M.C., Cortes, M.A., and Díaz, C.A.L., Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 767–770.CrossRefGoogle Scholar
  15. 15.
    Wu, H., Duan, A., Zhao, Z., Qi, D., Li, J., Liu, B., Jiang, G., Liu, J., Wei, Y. and Zhang, X., Fuel, 2014, vol. 130, pp. 203–210.CrossRefGoogle Scholar
  16. 16.
    Calderón-Magdaleno, M.Á., Mendoza-Nieto, J.A., and Klimova, T.E., Catal. Today, 2014, vols. 220–222, pp. 78–88.CrossRefGoogle Scholar
  17. 17.
    Leonova, K.A., Klimov, O.V., Kochubey, D.I., Chesalov, Yu.A., Gerasimov, E.Yu., Prosvirin, I.P., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 327–336.CrossRefGoogle Scholar
  18. 18.
    Minderhoud, J.K., van Veen, J.A.R., and Hagan, A.P., Stud. Surf. Sci. Catal., 1999, vol. 127, pp. 3–20.CrossRefGoogle Scholar
  19. 19.
    US Patent, 6399530, 2002.Google Scholar
  20. 20.
    Ivanova, A.S., Korneeva, E.V., Bukhtiyarova, G.A., Nuzhdin, A.L., Budneva, A.A., Prosvirin, I.P., Zaikovskii, V.I., and Noskov, A.S., Kinet. Catal., 2011, vol. 52, no. 3, pp. 446–458.CrossRefGoogle Scholar
  21. 21.
    RF Patent 2534998, 2014.Google Scholar
  22. 22.
    Nadeina, K.A., Klimov, O.V., Pereima, V.Yu., Koryakina, G.I., Danilova, I.G., Prosvirin, I.P., Gerasimov, E.Yu., Yegizariyan, A.M., and Noskov, A.S., Catal. Today, 2016, vol. 271, pp. 4–15.CrossRefGoogle Scholar
  23. 23.
    Ferraz, S.G.A., Zotin, F.M.Z., Araujo, L.R.R., and Zotin, J.L., Appl. Catal., A, 2010, vol. 384, nos. 1–2, pp. 51–57.CrossRefGoogle Scholar
  24. 24.
    Lai, W., Pang, L., Zheng, J., Li, J., Wu, Z., Yi, X., Fang, W., and Jia, L., Fuel Process. Technol., 2013, vol. 110, pp. 8–16.CrossRefGoogle Scholar
  25. 25.
    Wang, W., Li., L., Wu, K., Zhang, K, Jie., J., and Yang, Y., Appl. Catal., A, 2015, vol. 495, pp. 8–16.CrossRefGoogle Scholar
  26. 26.
    Yoosuk, B., Song, C., Kim., J.H., Ngamcharussrivichai, C., and Prasassarakich, P., Catal. Today, 2010, vol. 149, nos. 1–2, pp. 52–61.CrossRefGoogle Scholar
  27. 27.
    Ninh, T.K.T., Massin, L., Laurenti, D., and Vrinat, M., Appl. Catal., A, 2011, vol. 407, nos. 1–2, pp. 29–39.CrossRefGoogle Scholar
  28. 28.
    Alstrup, I., Chorkendorff, I., Candia, R., Clausen, B.S., and Topsøe, H., J. Catal., 1982, vol. 77, no. 2, pp. 397–409.CrossRefGoogle Scholar
  29. 29.
    Okamoto, Y., Imanaka, T., and Teranishi, S., J. Catal., 1980, vol. 65, no. 2, pp. 448–460.CrossRefGoogle Scholar
  30. 30.
    Barrera, M.C., Viniegra, M., Escobar, J., Vrinat, M., de los Reyes, J.A., Murrieta, F., and García, J., Catal. Today, 2004, vol. 98, nos. 1–2, pp. 131–139.CrossRefGoogle Scholar
  31. 31.
    Galtayries, A., Wisniewski, S., and Grimblot, J., J. Electron Spectrosc. Relat. Phenom., 1997, vol. 87, no. 1, pp. 31–44.CrossRefGoogle Scholar
  32. 32.
    Scott, C.E., Perez-Zurita, M.J., Carbognani, L.A., Molero, H., Vitale, G., Guzmán, H.J., and Pereira- Almao, P., Catal. Today, 2015, vol. 250, pp. 21–27.CrossRefGoogle Scholar
  33. 33.
    Houssenbay, S., Kasztelan, S., Toulhoat, H., Bonnelle, J.P., and Grimblot, J., J. Phys. Chem., 1989, vol. 93, no. 20, pp. 7176–7180.CrossRefGoogle Scholar
  34. 34.
    Karroua, M., Matralis, H., Grange, P., and Delmon, B., Bull. Soc. Chim. Belg., 1995, vol. 104, no. 1, pp. 11–18.CrossRefGoogle Scholar
  35. 35.
    Nikulshin, P.A., Salnikov, V.A., Mozhaev, A.V., Minaev, P.P., Kogan, V.M., and Pimerzin, A.A., J. Catal., 2014, vol. 309, pp. 386–396.CrossRefGoogle Scholar
  36. 36.
    Rodríguez-Reinoso, F., Carbon, 1998, vol. 36, no. 3, pp. 159–175.CrossRefGoogle Scholar
  37. 37.
    Radovic, L.R. in Carbon Materials for Catalysis, Serp, P. and Figueiredo, J.L., Eds., Hoboken, NJ: Wiley, 2009, pp. 1–44.Google Scholar
  38. 38.
    Leyva, C., Ancheyta, J., Travert, A., Maugé, F., Mariey, L., Ramírez, J., and Rana, M.S., Appl. Catal., A, 2012, vols. 425–426, pp. 1–12.CrossRefGoogle Scholar
  39. 39.
    Wyrzykowski, D., Hebanowska, E., Nowak-Wiczk, G., Makowski, M., and Chmurzyński, L., J. Therm. Anal. Calorim., 2011, vol. 104, no. 2, pp. 731–735.CrossRefGoogle Scholar
  40. 40.
    Barbooti, M.M. and Al-Sammerrai, D.A., Thermochim. Acta, 1986, vol. 98, pp. 119–126.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. P. Dik
    • 1
  • K. A. Nadeina
    • 1
  • M. O. Kazakov
    • 1
  • O. V. Klimov
    • 1
  • E. Yu. Gerasimov
    • 1
  • I. P. Prosvirin
    • 1
  • A. S. Noskov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations