Skip to main content
Log in

Hydrocracking of Vacuum Gasoil on NiMo/AAS-Al2O3 Catalysts Prepared from Citric Acid: Effect of the Catalyst Heat Treatment Temperature

  • Catalysis in Petroleum Refining Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Ni-Mo bimetallic catalysts are prepared by impregnating a carrier containing amorphous aluminosilicate (AAS) and aluminum oxide using a solution with Ni, Mo, and citric acid. The temperature of the catalysts ranges from 120 to 550°С. The physicochemical properties of the catalysts are studied via XPS, TEM, and HCNS analysis, and they are tested in hydrocracking of vacuum gasoil. The particles of the sulfide active component (NiMoS phase) are localized predominantly on surfaces of aluminum oxide, and only some are on surfaces of AAS. When the temperature of catalyst calcination is raised, the average number of the layers in particles of the NiMoS phase grows as well, due to the removal of citric acid. This indicates strengthening of the interaction between the sulfide active component and aluminum oxide. The content of Ni-Mo massive sulfide particles also grows along with the temperature of calcination. The morphological characteristics of the sulfide active component affect the activity of the catalysts in hydrodesulfurization and hydrodenitrogenation, but not in hydrocracking. The optimum heat treatment temperature for NiMo/AAS-Al2O3 catalysts prepared with citric acid is 120°C. Recommendations are given for the heat treatment of catalysts under industrial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mills, G.A., Heinemann, H., and Milliken, T.H., and Oblad, A.G., Ind. Eng. Chem., 1953, vol. 45, no. 1, pp. 134–137.

    Article  CAS  Google Scholar 

  2. Weisz, P.B., Adv. Catal., 1962, vol. 13, pp. 137–190.

    CAS  Google Scholar 

  3. Beuther, H. and Larson, O.A., Ind. Eng. Chem. Process Des. Dev., 1965, vol. 4, no. 2, pp. 177–181.

    Article  CAS  Google Scholar 

  4. Osipov, L.N., Agafonov, A.V., Khavkin, V.A., and Rogov, S.P., Chem. Technol. Fuels Oils, 1965, vol. 1, no. 8, pp. 581–585.

    Article  Google Scholar 

  5. Wiwel, P., Hinnemann, B., Hidalgo-Vivas, A., Zeuthen, P., Petersen, B.O., and Duus, J.Ø., Ind. Eng. Chem. Res., 2010, vol. 49, no. 7, pp. 3184–3193.

    Article  CAS  Google Scholar 

  6. Sau, M., Basak, K., Manna, U., Santra, M., and Verma, R.P., Catal. Today, 2005, vol. 109, nos. 1–4, pp. 112–119.

    Article  CAS  Google Scholar 

  7. Breysse, M., Berhault, G., Kasztelan, S., Lacroix, M., Maugé, F., and Perot, G., Catal. Today, 2001, vol. 66, no. 1, pp. 15–22.

    Article  CAS  Google Scholar 

  8. Topsøe, N.Y., Topsøe, H, and Massoth, F.E., J. Catal., 1989, vol. 119, no. 1, pp. 252–255.

    Article  Google Scholar 

  9. Kumaran, G.M., Garg, S., Kumar, M., Viswanatham, N., Gupta, J.K., Sharma, L.D., and Dhar, G.M., Energy Fuels, 2006, vol. 20, no. 6, pp. 2308–2313.

    Article  CAS  Google Scholar 

  10. Roussel, M., Lemberton, J.L., Guisnet, M., Cseri, T., and Benazzi, E., J. Catal., 2003, vol. 218, no. 2, pp. 427–437.

    Article  CAS  Google Scholar 

  11. Al-Dalama, K. and Stanislaus, A., Thermochim. Acta, 2011, vol. 520, nos. 1–2, pp. 67–74.

    Article  CAS  Google Scholar 

  12. Escobar, J., Barrera, M.C., de los Reyes, J.A., Toledo, J.A., Santes, V., and Colín, J.A., J. Mol. Catal. A: Chem., 2008, vol. 287, nos. 1–2, pp. 33–40.

    Article  CAS  Google Scholar 

  13. Van Veen, J.A.R., Colijn, H.A., Hendriks, P.A.J.M., and van Welsenes, A.J., Fuel Process. Technol., 1993, vol. 35, nos. 1–2, pp. 137–157.

    Article  Google Scholar 

  14. Escobar, J., Toledo, J.A., Gutiérrez, A.W., Barrera, M.C., Cortes, M.A., and Díaz, C.A.L., Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 767–770.

    Article  CAS  Google Scholar 

  15. Wu, H., Duan, A., Zhao, Z., Qi, D., Li, J., Liu, B., Jiang, G., Liu, J., Wei, Y. and Zhang, X., Fuel, 2014, vol. 130, pp. 203–210.

    Article  CAS  Google Scholar 

  16. Calderón-Magdaleno, M.Á., Mendoza-Nieto, J.A., and Klimova, T.E., Catal. Today, 2014, vols. 220–222, pp. 78–88.

    Article  Google Scholar 

  17. Leonova, K.A., Klimov, O.V., Kochubey, D.I., Chesalov, Yu.A., Gerasimov, E.Yu., Prosvirin, I.P., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 327–336.

    Article  Google Scholar 

  18. Minderhoud, J.K., van Veen, J.A.R., and Hagan, A.P., Stud. Surf. Sci. Catal., 1999, vol. 127, pp. 3–20.

    Article  CAS  Google Scholar 

  19. US Patent, 6399530, 2002.

  20. Ivanova, A.S., Korneeva, E.V., Bukhtiyarova, G.A., Nuzhdin, A.L., Budneva, A.A., Prosvirin, I.P., Zaikovskii, V.I., and Noskov, A.S., Kinet. Catal., 2011, vol. 52, no. 3, pp. 446–458.

    Article  CAS  Google Scholar 

  21. RF Patent 2534998, 2014.

  22. Nadeina, K.A., Klimov, O.V., Pereima, V.Yu., Koryakina, G.I., Danilova, I.G., Prosvirin, I.P., Gerasimov, E.Yu., Yegizariyan, A.M., and Noskov, A.S., Catal. Today, 2016, vol. 271, pp. 4–15.

    Article  CAS  Google Scholar 

  23. Ferraz, S.G.A., Zotin, F.M.Z., Araujo, L.R.R., and Zotin, J.L., Appl. Catal., A, 2010, vol. 384, nos. 1–2, pp. 51–57.

    Article  CAS  Google Scholar 

  24. Lai, W., Pang, L., Zheng, J., Li, J., Wu, Z., Yi, X., Fang, W., and Jia, L., Fuel Process. Technol., 2013, vol. 110, pp. 8–16.

    Article  CAS  Google Scholar 

  25. Wang, W., Li., L., Wu, K., Zhang, K, Jie., J., and Yang, Y., Appl. Catal., A, 2015, vol. 495, pp. 8–16.

    Article  CAS  Google Scholar 

  26. Yoosuk, B., Song, C., Kim., J.H., Ngamcharussrivichai, C., and Prasassarakich, P., Catal. Today, 2010, vol. 149, nos. 1–2, pp. 52–61.

    Article  CAS  Google Scholar 

  27. Ninh, T.K.T., Massin, L., Laurenti, D., and Vrinat, M., Appl. Catal., A, 2011, vol. 407, nos. 1–2, pp. 29–39.

    Article  CAS  Google Scholar 

  28. Alstrup, I., Chorkendorff, I., Candia, R., Clausen, B.S., and Topsøe, H., J. Catal., 1982, vol. 77, no. 2, pp. 397–409.

    Article  CAS  Google Scholar 

  29. Okamoto, Y., Imanaka, T., and Teranishi, S., J. Catal., 1980, vol. 65, no. 2, pp. 448–460.

    Article  CAS  Google Scholar 

  30. Barrera, M.C., Viniegra, M., Escobar, J., Vrinat, M., de los Reyes, J.A., Murrieta, F., and García, J., Catal. Today, 2004, vol. 98, nos. 1–2, pp. 131–139.

    Article  CAS  Google Scholar 

  31. Galtayries, A., Wisniewski, S., and Grimblot, J., J. Electron Spectrosc. Relat. Phenom., 1997, vol. 87, no. 1, pp. 31–44.

    Article  CAS  Google Scholar 

  32. Scott, C.E., Perez-Zurita, M.J., Carbognani, L.A., Molero, H., Vitale, G., Guzmán, H.J., and Pereira- Almao, P., Catal. Today, 2015, vol. 250, pp. 21–27.

    Article  CAS  Google Scholar 

  33. Houssenbay, S., Kasztelan, S., Toulhoat, H., Bonnelle, J.P., and Grimblot, J., J. Phys. Chem., 1989, vol. 93, no. 20, pp. 7176–7180.

    Article  CAS  Google Scholar 

  34. Karroua, M., Matralis, H., Grange, P., and Delmon, B., Bull. Soc. Chim. Belg., 1995, vol. 104, no. 1, pp. 11–18.

    Article  CAS  Google Scholar 

  35. Nikulshin, P.A., Salnikov, V.A., Mozhaev, A.V., Minaev, P.P., Kogan, V.M., and Pimerzin, A.A., J. Catal., 2014, vol. 309, pp. 386–396.

    Article  CAS  Google Scholar 

  36. Rodríguez-Reinoso, F., Carbon, 1998, vol. 36, no. 3, pp. 159–175.

    Article  Google Scholar 

  37. Radovic, L.R. in Carbon Materials for Catalysis, Serp, P. and Figueiredo, J.L., Eds., Hoboken, NJ: Wiley, 2009, pp. 1–44.

  38. Leyva, C., Ancheyta, J., Travert, A., Maugé, F., Mariey, L., Ramírez, J., and Rana, M.S., Appl. Catal., A, 2012, vols. 425–426, pp. 1–12.

    Article  Google Scholar 

  39. Wyrzykowski, D., Hebanowska, E., Nowak-Wiczk, G., Makowski, M., and Chmurzyński, L., J. Therm. Anal. Calorim., 2011, vol. 104, no. 2, pp. 731–735.

    Article  CAS  Google Scholar 

  40. Barbooti, M.M. and Al-Sammerrai, D.A., Thermochim. Acta, 1986, vol. 98, pp. 119–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Dik.

Additional information

Original Russian Text © P.P. Dik, K.A. Nadeina, M.O. Kazakov, O.V. Klimov, E.Yu. Gerasimov, I.P. Prosvirin, A.S. Noskov, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dik, P.P., Nadeina, K.A., Kazakov, M.O. et al. Hydrocracking of Vacuum Gasoil on NiMo/AAS-Al2O3 Catalysts Prepared from Citric Acid: Effect of the Catalyst Heat Treatment Temperature. Catal. Ind. 10, 29–40 (2018). https://doi.org/10.1134/S2070050418010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418010038

Keywords

Navigation