Skip to main content
Log in

Drought Tolerance of Ornamental Poplar Forms Cultured In Vitro

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The resistance of regenerate Populus alba×P. bolleana no.7, P. alba×P. bolleana no.12, and P. davidiana×P. bolleana cv. Baicheng 1 plants cultured in vitro to osmotic stress is examined. It is found that hybrid no. 7 tolerates d-mannitol in the nutrient medium at concentrations up to 250 mM after a 30-day culturing period, while the Baicheng 1 variety tolerates it only in concentrations up to 50 mM. Hybrid no. 12 remains viable at d-mannitol concentrations up to 150 mM. The application of d-mannitol statistically significantly reduces leaf blade parameters (length, width, and leaf area) only in hybrid no. 7; in the rest of the studied specimens, the differences are statistically insignificant (p < 0.05). The introduction of the osmotic component reduces the fresh and dry weight of all studied specimens by 1.7–2.2 times; the water content in their tissues remains virtually unchanged. In relation to drought tolerance, the results are confirmed by micromorphological parameters (stomatal apparatus and pubescence). The Baicheng 1 poplar variety features the lowest pubescence and the highest stomatal density (155.44 pcs/mm2), while poplar hybrid no. 7 features the highest pubescence and the lowest stomatal density (127.75 pcs/mm2). No direct relationship between the osmotic stress and the number and size of stomata was identified in the studied specimens. Our data indicate that the studied poplar hybrids feature different resistance to osmotic stress when cultured in vitro. Hybrid no. 7 is more drought-resistant and can be recommended for urban landscaping in arid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anderegg, W., Kane, J., and Anderegg, L., Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 2013, vol. 3, pp. 30–36. https://doi.org/10.1038/nclimate1635

    Article  Google Scholar 

  2. Arzani, K., Ghasemi, M., Yadollahi, A., and Hokmabadi, H., Study of foliar epidermal anatomy of four pistachio rootstocks under water stress, Idesia (Arica), 2013, vol. 31, pp. 101‒107. https://doi.org/10.4067/S0718-34292013000100012

    Article  Google Scholar 

  3. Bakulin, V.T., Topol’ belyi v Zapadnoi Sibiri (White Poplar in Western Siberia), Novosibirsk: Geo, 2012.

    Google Scholar 

  4. Bosabalidis, A.M. and Kofidis, G., Comparative effects of drought stress on leaf anatomy of two olive cultivars, Plant Sci., 2002, vol. 163, pp. 375‒379. https://doi.org/10.1016/S0168-9452(02)00135-8

    Article  CAS  Google Scholar 

  5. Claeys, H., Van Landeghem, S., Dubois, M., Maleux, K., and Inzé, D., What is stress? Dose-response effects in commonly used in vitro stress assays, Plant Physiol., 2014, vol. 165, pp. 519–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Errabii, T., Gandonou, C.B., Essalmani, H., Abrini, J., I-daomar, M., and Senhaji, N.S., Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures, Acta Physiol. Plant., 2007, vol. 29, pp. 95–102. https://doi.org/10.1007/s11738-006-0006-1

    Article  CAS  Google Scholar 

  7. Erst, A.A. and Banaev, E.V., Coservation and propagation in culture in vitro of ornamental forms of poplar selected by the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Byull. Gl. Bot. Sada, 2021, vol. 1, pp. 61–69. https://doi.org/10.25791/BBGRAN.01.2021.1085

    Article  Google Scholar 

  8. Erst, A.A., Bakulin, V.T, Erst, A.S., Kuznetzov, A.A., and Bayahmetov, E.Zh., In vitro propagation of ornamental hybrids of Populus L., Biosci., Biotechnol., Res. Asia, 2014, vol. 11, pp. 69–77.

    Article  Google Scholar 

  9. Erst, A.A., Shishkin, S.V., and Voronkova, M.S., Evaluation of salinity and osmotic stress resistance of the genus Populus species and hybrids in culture in vitro, Plant Cell Biotechnol. Mol. Biol., 2019, vol. 20, nos. 11–12, pp. 451‒458.

  10. Esmaeilpour, A., Van Labeke, M.-C., Samson, R., Boeckx, P., and Van Damme, P., Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio (Pistacia vera L.) cultivars under drought stress condition, Sci. Hortic, 2016, vol. 211, pp. 158‒166. https://doi.org/10.1016/j.scienta.2016.08.026

    Article  CAS  Google Scholar 

  11. Fomin, E.S. and Fomina, T.I., Changes in the phenology of perennial plants in Western Siberia against the background of global warming, Contemp. Probl. Ecol., 2021, vol. 14, pp. 434–445. https://doi.org/10.1134/S199542552105005X

    Article  Google Scholar 

  12. Galdon-Armero, J., Fullana-Pericas, M., Mulet, P.A., Conesa, M.A., Martin, C., and Galmes, J., The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato), Plant J., 2018, vol. 96, no. 3, pp. 607–619. https://doi.org/10.1111/tpj.14055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hauser, M.T., Molecular basis of natural variation and environmental control of trichome patterning, Front. Plant Sci., 2014, vol. 5, p. 320. https://doi.org/10.3389/fpls.2014.00320

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hetherington, A. and Woodward, F., The role of stomata in sensing and driving environmental change, Nature, 2003, vol. 424, pp. 901–908. https://doi.org/10.1038/nature01843

    Article  CAS  PubMed  Google Scholar 

  15. Kang, J.M., Kojima, K., Ide, Y., and Sasaki, S., Growth response to the stress of low osmotic potential, salinity and high pH in cultured shoot of Chinese poplars, J. For. Res., 1996, vol. 1, pp. 27–29. https://doi.org/10.1007/BF02348336

    Article  Google Scholar 

  16. Kim, T.H., Böhmer, M., Hu, H., Nishimura, N., and Schroeder, J.I., Guard cell signal transduction network: advances in understanding abscisic acid, CO2 and Ca2+ signaling, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 561–591. https://doi.org/10.1146/annurev-arplant-042809-112226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Miller, R., Reactive oxygen species homeostasis and signaling during drought and salinity stresses, Plant Cell Environ., 2010, vol. 33, pp. 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  PubMed  Google Scholar 

  18. Mo, Y., Yang, R., Liu, L., Gu, X., Yang, X., Wang, Y., Zhang, X., and Li, H., Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering, Plant Growth Regul., 2016, vol. 79, pp. 229–241. https://doi.org/10.1007/s10725-015-0128-9

    Article  CAS  Google Scholar 

  19. Munir, M., Khan, M.A., Ahmed, M., Bano, A., Ahmed, S.N., Tariq, K., Tabassum, S., Mukhtar, T., Ambreen, M., and Bashir, S., Foliar epidermal anatomy of some ethnobotanically important species of wild edible fruits of northern Pakistan, J. Med. Plants Res., 2011, vol. 5, pp. 5873‒5880.

    Google Scholar 

  20. Muradoğlu, F. and Gündoğdu, M., Stomata size and frequency in some walnut (Juglans regia) cultivars, Int. J. Agric. Biol., 2011, vol. 13, no. 6, pp. 1011–1015.

    Google Scholar 

  21. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant., 1962, vol. 15, no. 2, pp. 473–497.

    Article  CAS  Google Scholar 

  22. Ostry, M.E., In vitro screening and selection for disease resistance, in Micropropagation, Genetic Engineering and Molecular Biology of Populus, Klopfenstein, N.B., Chun, Y.W., Kim, M.S., and Ahuja, M.R., Eds., Fort Collins, 1997, pp. 155–160.

    Google Scholar 

  23. Ouyang, S.Q., Liu, Y.F., Liu, P., Lei, G., He, S.J., Ma, B., Zhang, W.K, Zhang, J.S., and Chen, S.Y., Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants, Plant J., 2010, vol. 62, pp. 316–329. https://doi.org/10.1111/j.1365-313X.2010.04146.x

    Article  CAS  PubMed  Google Scholar 

  24. Pant, N.C., Agarrwal, R., and Agrawal, S., Mannitol-induced drought stress on calli of Trigonella foenum-graecum L. Var. RMt-303, Indian J. Exp. Biol., 2014, vol. 52, pp. 1128–1137.

    PubMed  Google Scholar 

  25. Polle, A., Chen, S.L., Eckert, C., and Harfouche, A., Engineering drought resistance in forest trees, Front. Plant Sci., 2019, vol. 9, p. 1875. https://doi.org/10.3389/fpls.2018.01875

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quan, W., Liu, X., Wang, H., and Chan, Z., Comparative physiological and transcriptional analyses of two contrasting drought tolerant Alfalfa varieties, Front. Plant Sci., 2016, vol. 6, p. 1256. https://doi.org/10.3389/fpls.2015.01256

    Article  PubMed  PubMed Central  Google Scholar 

  27. Razavizadeh, R., Farahzadianpoor, F., Adabavazeh, F., and Komatsu, S., Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress, In Vitro Cell. Dev. Biol.-Plant., 2019, vol. 55, pp. 342–357. https://doi.org/10.1007/s11627-019-09979-1

    Article  CAS  Google Scholar 

  28. Singh, D., Kaur, S., and Kumar, A., In vitro drought tolerance in selected elite clones of Eucalyptus tereticornis Sm., Acta Physiol. Plant., 2020, vol. 42, p. 17. https://doi.org/10.1007/s11738-019-3009-4

    Article  CAS  Google Scholar 

  29. Szyp-Borowska, I., Ukalska, J., Niemczyk, M., Wojda, T., and Thomas, B.R., Effects of water deficit stress on growth parameters of Robinia pseudoacacia L. selected clones under in vitro conditions, Forests, 2022, vol. 13, no. 12, p. 1979. https://doi.org/10.3390/f13121979

    Article  Google Scholar 

  30. Vuksanović, V., Kovačević, B., Orlović, S., Kebert, M., and Kovač, M., The influence of drought on growth and development of white poplar shoots in vitro, Poplar, 2019, vol. 203, pp.13‒18.

    Google Scholar 

  31. Watanabe, S., Kojima, K., Ide, Y., and Sasaki, S., Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro, Plant Cell, Tissue Organ Cult., 2000, vol. 63, pp. 199–206. https://doi.org/10.1023/A:1010619503680

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using materials from the bioresource scientific collection of the Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences “Collections of Living Plants Cultivated Outdoors and Indoors,” Unique Scientific Facility no. USU 440534.

Funding

This study was performed as part of the State Task of the Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences, projects no. AAAA-A21-121011290027-6 and AAAA-A21-121011290025-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Erst or A. V. Karakulov.

Ethics declarations

Conflict of Interest. The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erst, A.A., Karakulov, A.V. Drought Tolerance of Ornamental Poplar Forms Cultured In Vitro. Contemp. Probl. Ecol. 16, 339–345 (2023). https://doi.org/10.1134/S1995425523030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523030058

Keywords:

Navigation