Skip to main content
Log in

Production Well Placement and History Matching by Hyperparametric Optimization and Machine Learning

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This article explores methods for resolving two practical issues in reservoir engineering: discovering an optimal position for the production well on a grid, and recovering unknown fracture position based on the historical production data. To speed up the conventional approach (numerical simulation and the full grid search), we assess application of optimization techniques from the Hyperopt package as well as several machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. F. Anterion, R. Eymard, and B. Karcher, ‘‘Use of parameter gradients for reservoir history matching,’’ in Proceedings of the SPE Symposium on Reservoir Simulation, Houston, Texas, February 1989 (1989), SPE-18433-MS. https://doi.org/10.2118/18433-MS

  2. D. Arnold, V. Demyanov, D. Tatum, M. Christie, T. Rojas, S. Geiger, and P. Corbett, ‘‘Hierarchical benchmark case study for history matching, uncertainty quantification and reservoir characterisation,’’ Comput. Geosci. 50, 4–15 (2013). https://doi.org/10.1016/j.cageo.2012.09.011

    Article  Google Scholar 

  3. C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, ‘‘A comparative analysis of gradient boosting algorithms,’’ Artif. Intell. Rev. 54, 1937–1967 (2021). https://doi.org/10.1007/s10462-020-09896-5

    Article  Google Scholar 

  4. J. Bergstra, D. Yamins, and D. Cox, ‘‘Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures,’’ in Proceedings of the 30th International Conference on Machine Learning, Proc. Mach. Learn. Res. 28, 115–123 (2013). https://proceedings.mlr.press/v28/bergstra13.html

  5. D. Bertsimas and J. Tsitsiklis, ‘‘Simulated annealing,’’ Stat. Sci. 8, 10–15 (1993). https://doi.org/10.1214/ss/1177011077

    Article  Google Scholar 

  6. J. N. Carter and D. A. White, ‘‘History matching on the imperial college fault model using parallel tempering,’’ Comput. Geosci. 17, 43–65 (2013). https://doi.org/10.1007/s10596-012-9313-3

    Article  Google Scholar 

  7. A. R. Crockett, R. M. Willis, Jr., and M. P. Cleary, ‘‘Improvement of hydraulic fracture predictions by real-time history matching on observed pressures,’’ SPE Prod. Eng. 4, 408–416 (1989). https://doi.org/10.2118/15264-PA

    Article  Google Scholar 

  8. A. A. Danilov, K. M. Terekhov, I. N. Konshin, and Yu. V. Vassilevski, ‘‘Parallel software platform inmost: A framework for numerical modeling,’’ Supercomput. Front. Innov. 2 (4), 55–66 (2015). https://doi.org/10.14529/jsfi150404

    Article  Google Scholar 

  9. A. V. Dorogush, V. Ershov, and A. Gulin, ‘‘Catboost: Gradient boosting with categorical features support,’’ arXiv: 1810.11363 (2018). https://doi.org/10.48550/arXiv.1810.11363

  10. N. R. Edris, K. D. Stephen, A. Shams, and C. Macbeth, ‘‘Updating fault transmissibilies in simulations by successively adding data to an automated seismic history matching processes: A case study,’’ in SPE Europec Featured at EAGE Conference and Exhibition (SPE, 2008), SPE-113557-MS. https://doi.org/10.2118/113557-MS

  11. C. Etienam, I. Mahmood, and R. Villegas, ‘‘History matching of reservoirs by updating fault properties using 4D seismic results and ensemble Kalman filter,’’ in SPE Europec Featured at EAGE Conference and Exhibition (SPE, 2017), SPE-185780-MS. https://doi.org/10.2118/185780-MS

  12. D. Eydinov, G. Gao, G. Li, and A. C. Reynolds, ‘‘Simultaneous estimation of relative permeability and porosity/permeability fields by history matching production data,’’ J. Can. Pet. Technol. 48 (12), 13–25 (2009). https://doi.org/10.2118/132159-PA

    Article  Google Scholar 

  13. R. Eymard, T. Gallouët, C. Guichard, R. Herbin, and R. Masson, ‘‘TP or not TP, that is the question,’’ Comput. Geosci. 18, 285–296 (2014). https://doi.org/10.1007/s10596-013-9392-9

    Article  MathSciNet  Google Scholar 

  14. J. R. Gilman and C. Ozgen, Reservoir Simulation: History Matching and Forecasting (Soc. Pet. Eng., Richardson, 2013). https://doi.org/10.2118/9781613992920

    Book  Google Scholar 

  15. J. He, J. Sætrom, and L. J. Durlofsky, ‘‘Enhanced linearized reduced-order models for subsurface flow simulation,’’ J. Comput. Phys. 230, 8313–8341 (2011). https://doi.org/10.1016/j.jcp.2011.06.007

    Article  MathSciNet  Google Scholar 

  16. J. D. Jansen and L. J. Durlofsky, ‘‘Use of reduced-order models in well control optimization,’’ Optim. Eng. 18, 105–132 (2017). https://doi.org/10.1007/s11081-016-9313-6

    Article  MathSciNet  Google Scholar 

  17. Z. L. Jin, Y. Liu, and L. J. Durlofsky, ‘‘Deep-learning-based surrogate model for reservoir simulation with time-varying well controls,’’ J. Pet. Sci. Eng. 192, 107273 (2020). https://doi.org/10.1016/j.petrol.2020.107273

  18. M. Karimi-Fard, L. J. Durlofsky, and K. Aziz, ‘‘An efficient discrete-fracture model applicable for general-purpose reservoir simulators,’’ SPE J. 9, 227–236 (2004). https://doi.org/10.2118/88812-PA

    Article  Google Scholar 

  19. I. Konshin and K. Terekhov, ‘‘Solution of large-scale black oil recovery problem in parallel using inmost platform,’’ in Supercomputing, Proceedings of the 7th Russian Supercomputing Days, RuSCDays 2021 Conference, Moscow, Russia, September 27–28, 2021 (Springer, 2021), pp. 240–255. https://doi.org/10.1007/978-3-030-92864-3_19

  20. M. Krause, J.-C. Perrin, and S. Benson, ‘‘Recent progress in predicting permeability distributions for history matching core flooding experiments,’’ Energy Proc. 4, 4354–4361 (2011). https://doi.org/10.1016/j.egypro.2011.02.387

    Article  Google Scholar 

  21. E. A. H. Michie, M. J. Mulrooney, and A. Braathen, ‘‘Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: A case study from the horda platform, with implications for CO\({}_{2}\) storage,’’ Solid Earth 12, 1259–1286 (2021). https://doi.org/10.5194/se-12-1259-2021

    Article  Google Scholar 

  22. M. Moradi Dowlatabad and M. Jamiolahmady, ‘‘The performance evaluation and design optimisation of multiple fractured horizontal wells in tight reservoirs,’’ J. Nat. Gas Sci. Eng. 49, 19–31 (2018). https://doi.org/10.1016/j.jngse.2017.10.011

    Article  Google Scholar 

  23. L. Mosser, O. Dubrule, and M. J. Blunt, ‘‘Deepflow: History matching in the space of deep generative models,’’ arXiv: 1905.05749 (2019). https://doi.org/10.48550/arXiv.1905.05749

  24. S. Nejadi, J. J. Trivedi, and J. Leung, ‘‘History matching and uncertainty quantification of discrete fracture network models in fractured reservoirs,’’ J. Pet. Sci. Eng. 152, 21–32 (2017). https://doi.org/10.1016/j.petrol.2017.01.048

    Article  Google Scholar 

  25. K. Nikitin, K. Terekhov, and Yu. Vassilevski, ‘‘A monotone nonlinear finite volume method for diffusion equations and multiphase flows,’’ Comput. Geosci. 18, 311–324 (2014). https://doi.org/10.1007/s10596-013-9387-6

    Article  MathSciNet  Google Scholar 

  26. H. Park, C. Scheidt, D. Fenwick, A. Boucher, and J. Caers, ‘‘History matching and uncertainty quantification of facies models with multiple geological interpretations,’’ Comput. Geosci. 17, 609–621 (2013). https://doi.org/10.1007/s10596-013-9343-5

    Article  Google Scholar 

  27. A. P. Kalajahi, I. P. Raya, and R. M. D’Souza, ‘‘Physics informed deep neural net inverse modeling for estimating model parameters in permeable porous media flows,’’ J. Fluids Eng. 144, 061102 (2022). https://doi.org/10.1115/1.4053549

  28. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, et al., ‘‘PyTorch: An imperative style, high-performance deep learning library,’’ in Advances in Neural Information Processing Systems, Proceedings of the 32nd Annual Conference 2019, Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran Assoc., 2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

  29. D. W. Peaceman, ‘‘Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988),’’ Soc. Pet. Eng. J. 18, 183–194 (1978). https://doi.org/10.2118/6893-PA

    Article  Google Scholar 

  30. E. Peters, R. J. Arts, G. K. Brouwer, C. R. Geel, S. Cullick, R. J. Lorentzen, Y. Chen, K. N. B. Dunlop, F. C. Vossepoel, R. Xu, et al., ‘‘Results of the Brugge benchmark study for flooding optimization and history matching,’’ SPE Res. Eval. Eng. 13, 391–405 (2010). https://doi.org/10.2118/119094-PA

    Article  Google Scholar 

  31. E. Peters, Y. Chen, O. Leeuwenburgh, and D. S. Oliver, ‘‘Extended Brugge benchmark case for history matching and water flooding optimization,’’ Comput. Geosci. 50, 16–24 (2013). https://doi.org/10.1016/j.cageo.2012.07.018

    Article  Google Scholar 

  32. H. Rahmanifard and T. Plaksina, ‘‘Application of fast analytical approach and ai optimization techniques to hydraulic fracture stage placement in shale gas reservoirs,’’ J. Nat. Gas Sci. Eng. 52, 367–378 (2018). https://doi.org/10.1016/j.jngse.2018.01.047

    Article  Google Scholar 

  33. M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,’’ J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

    Article  MathSciNet  Google Scholar 

  34. C. D. Rowe and W. A. Griffith, ‘‘Do faults preserve a record of seismic slip: A second opinion,’’ J. Struct. Geol. 78, 1–26 (2015). https://doi.org/10.1016/j.jsg.2015.06.006

    Article  Google Scholar 

  35. P. Sellin and O. X. Leupin, ‘‘The use of clay as an engineered barrier in radioactive-waste management – A review,’’ Clays Clay Miner. 61, 477–498 (2013). https://doi.org/10.1346/CCMN.2013.0610601

    Article  Google Scholar 

  36. M. Simonov, A. Akhmetov, P. Temirchev, D. Koroteev, R. Kostoev, E. Burnaev, and I. Oseledets, ‘‘Application of machine learning technologies for rapid 3D modeling of inflow to the well in the development system,’’ in Proceedings of the SPE Russian Petroleum Technology Conference (OnePetro, 2018). https://doi.org/10.2118/191593-18RPTC-MS

  37. S. Suzuki, ‘‘Integrated evaluation of structural uncertainty using history matching from seismic imaging uncertainty model,’’ PhD Thesis (Stanford Univ., 2007). https://pangea.stanford.edu/ERE/pdf/pereports/PhD/Suzuki07.pdf.

  38. M. Tang, Y. Liu, and L. J. Durlofsky, ‘‘A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems,’’ J. Comput. Phys. 413, 109456 (2020). https://doi.org/10.1016/j.jcp.2020.109456

  39. Z. Tavassoli, J. N. Carter, and P. R. King, ‘‘An analysis of history matching errors,’’ Comput. Geosci. 9, 99–123 (2005). https://doi.org/10.1007/s10596-005-9001-7

    Article  Google Scholar 

  40. Z. Tavassoli, J. N. Carter, and P. R. King, ‘‘Errors in history matching,’’ SPE J. 9, 352–361 (2004). https://doi.org/10.2118/86883-PA

    Article  Google Scholar 

  41. P. Temirchev, M. Simonov, R. Kostoev, E. Burnaev, I. Oseledets, A. Akhmetov, A. Margarit, A. Sitnikov, and D. Koroteev, ‘‘Deep neural networks predicting oil movement in a development unit,’’ J. Pet. Sci. Eng. 184, 106513 (2020). https://doi.org/10.1016/j.petrol.2019.106513

  42. S. Tripoppoom, J. Xie, R. Yong, J. Wu, W. Yu, K. Sepehrnoori, J. Miao, C. Chang, and N. Li, ‘‘Investigation of different production performances in shale gas wells using assisted history matching: Hydraulic fractures and reservoir characterization from production data,’’ Fuel 267, 117097 (2020). https://doi.org/10.1016/j.fuel.2020.117097

  43. O. Volkov and M. C. Bellout, ‘‘Gradient-based production optimization with simulation-based economic constraints,’’ Comput. Geosci. 21, 1385–1402 (2017). https://doi.org/10.1007/s10596-017-9634-3

    Article  MathSciNet  Google Scholar 

  44. O. Volkov and M. C. Bellout, ‘‘Gradient-based constrained well placement optimization,’’ J. Pet. Sci. Eng. 171, 1052–1066 (2018). https://doi.org/10.1016/j.petrol.2018.08.033

    Article  Google Scholar 

  45. M. Yang and J. T. Foster, ‘‘Using physics-informed neural networks to solve for permeability field under two-phase flow in heterogeneous porous media,’’ J. Mach. Learn. Model. Comput. 4, 1–19 (2023). https://doi.org/10.1615/JMachLearnModelComput.2023046921

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Yulia Ershova (Gubkin University) and Ilya Ukhin (MSU), the participants of a previous school of Sirius university, for exploring the Hyperopt optimization approach.

Funding

Supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075-10-2021-093, Project MMD-RND-2265).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Donskoi, A. Medvedev, T. Shchudro, K. Terekhov or Yu. Vassilevski.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donskoi, A., Medvedev, A., Shchudro, T. et al. Production Well Placement and History Matching by Hyperparametric Optimization and Machine Learning. Lobachevskii J Math 45, 166–176 (2024). https://doi.org/10.1134/S1995080224010116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010116

Keywords:

Navigation