Skip to main content
Log in

Production of ultrafine tungsten carbide in a discharge plasma jet

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this investigation, the feasibility of direct synthesis and production of ultrafine tungsten carbide in a high-speed jet of tungsten carbon electric discharge plasma is shown. According to X-ray diffraction and electron microscopy, the plasmadynamic synthesis product consists of the cubic modification of tungsten carbide mostly, the structure of which is closest to the structural model of WC1 − x . Furthermore, the powder contains crystalline tungsten W, tungsten carbon W2C, and graphite C, the total weight of that amount being about 2.0 wt %. The particles of the tungsten material have a two-layer carbon shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Kurlov and A. I. Gusev, “Phase equilibriums in W-C system and wolfram carbides,” Usp. Khim. 75(7), 687–708 (2006).

    Article  Google Scholar 

  2. K. Abdelouahdi, C. Sant, C. Legrand-Buscema, P. Aubert, J. Perrière, G. Renou, and P. Houdy, “Microstructural and mechanical investigations of tungsten carbide films deposited by reactive RF sputtering,” Surf. Coat. Technol., No. 200, 6469–6473 (2006).

    Google Scholar 

  3. S. Aravinth, B. Sankar, M. Kamaraj, S. R. Chakravarthy, and R. Sarathi, “Synthesis and characterization of hexagonal nano tungsten carbide powder using multi walled carbon nanotubes,” Int. J. Refract. Met. Hard Mater., No. 33, 53–57 (2012).

    Google Scholar 

  4. D. J. Ham, R. Ganesan, and J. S. Lee, “Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water,” Int. J. Hydrogen Energy, No. 33, 6865–6872 (2008).

    Google Scholar 

  5. A. V. Samokhin, N. V. Alekseev, and Yu. V. Tsvetkov, “Plasmochemical processes for synthesizing nanodispersed powders,” Khim. Vys. Energii 40(2), 120–126 (2006).

    Google Scholar 

  6. A. A. Sivkov and A. Ya. Pak, “On the possibility of dynamic synthesis of ultradispersed crystalline phases of the B-C-N system in a hyperhigh-speed plasma jet,” Journal of Superhard Materials 32(1), 21 (2010).

    Article  Google Scholar 

  7. A. A. Sivkov and A. Ya. Pak, “On possible synthesis and crystalline structure of nanodisperse C3N4 carbon nitride,” Tech. Phys. Lett. 37(7), 654 (2011).

    Article  Google Scholar 

  8. A. A. Sivkov, D. S. Nikitin, A. Ya. Pak, and I. A. Rakhmatullin, “Direct plasmadynamic synthesis of ultradisperse silicon carbide,” Tech. Phys. Lett. 39(1), 105 (2013).

    Article  Google Scholar 

  9. A. A. Sivkov, E. P. Naiden, and D. Yu. Gerasimov, “Direct dynamical synthesis of nanodispersed titanium nitride in high speed pulse jet of electroerosion plasma,” Sverkhtverd. Mater. 30(5), 33–39 (2008).

    Google Scholar 

  10. A. A. Sivkov and A. Ya. Pak, RF Patent No. 2431947, H05H 11/00, F41B 6/00, Byull. Izobret., No. 29 (2011).

  11. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-Ray and Electron-Optical Analysis (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  12. E. Krainer and J. Robitsch, “Zur Frage des kubischen Wolframkarbids,” Planseeber, Pulvermetall 15(3), 179–180 (1967).

    Google Scholar 

  13. Ming-Hong Lin, “Synthesis of nanophase tungsten carbide by electrical discharge machining,” Ceram. Int., No. 31, 1109–1115 (2005).

    Google Scholar 

  14. Hua Jun Zheng, Ai Mei Yu, and Chun An Ma, “Polyporous C@WC1 − x composite and its electrocatalic activity for p-nitrophenol reduction,” Chinese Chem. Lett., No. 22, 497–500 (2011).

    Google Scholar 

  15. F. G. Zhang, X. P. Zhu, and M. K. Lei, “Microstructural evolution and its correlation with hardening of WC-Ni cemented carbides irradiated by high-intensity pulsed ion beam,” Surf. Coat. Technol., No. 206, 4146–4155 (2012).

    Google Scholar 

  16. J. Y. Howe, C. J. Rawn, L. E. Jones, and H. Ow, “Improved crystallographic data for graphite,” Powder Diffr. 18(2), 150–154 (2003).

    Article  Google Scholar 

  17. J. Leciejewicz, “A note on the structure of tungsten carbide,” Acta Cristallogr, No. 14, 200 (1961).

    Google Scholar 

  18. T. Epicier, J. Dubois, C. Esnouf, G. Fantozzi, and P. Convert, “Neutron powder diffraction studies of transition metal hemicarbides M2C1 − x — II. In situ high temperature study on W2C1 − x and Mo2C1 − x ,” Acta Metall. 36(8), 1903–1921 (1988).

    Article  Google Scholar 

  19. H. E. Swanson and E. Tatge, Standard X-Ray Diffraction Powder Patterns (National Bureau of Standards, 1953).

    Google Scholar 

  20. R. G. Rakov, Nanotubes and Fullerens (Lotos, Moscow, 2006) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sivkov.

Additional information

Original Russian Text © A.A. Sivkov, A.Ya. Pak, I.A. Rakhmatullin, K.N. Shatrova, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivkov, A.A., Pak, A.Y., Rakhmatullin, I.A. et al. Production of ultrafine tungsten carbide in a discharge plasma jet. Nanotechnol Russia 9, 682–687 (2014). https://doi.org/10.1134/S1995078014060147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014060147

Keywords

Navigation