Skip to main content
Log in

Hybrid dispersed magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A hybrid dispersed magnetic nanomaterial of a core-shell structure with a core of Fe3O4 particles and a shell of polydiphenylamine-2-carboxylic acid is obtained for the first time. According to TEM data, Fe3O4/polydiphenylamine-2-carboxylic acid nanoparticles have dimensions 4 < d < 14 nm. By means of IR spectroscopy, it is established that the polymer shell is formed via C-C added to 2- and 4-positions of phenyl rings with respect to nitrogen. It is found that obtained nanocomposite material is superparamagnetic and highly thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhang and M. Wan, “Nanostructures of polyaniline composites containing nano-magnet,” Synth. Met. 132(2), 205–212 (2003).

    Article  Google Scholar 

  2. J. Deng, C. He, Y. Peng, J. Wang, X. Long, P. Li, and A. Chan, “Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure,” Synth. Met. 139(2), 295–301 (2003).

    Article  Google Scholar 

  3. J. Deng, Y. Peng, Ch. He, X. Long, P. Li, and A. S. C. Chan, “Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure,” Polym. Int. 52(7), 1182–1187 (2003).

    Article  Google Scholar 

  4. A. Khan, A. S. Aldwayyan, M. Mansour Alhoshan, and M. Alsalhi, “Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite,” Polym. Int. 59(12), 1690–1694 (2010).

    Article  Google Scholar 

  5. X. Lu, Y. Yu, L. Chen, H. Mao, H. Gao, J. Wang, W. Zhang, and Y. Wey, “Aniline dimmer-COOH assisted preparation of well-dispersed polyaniline-Fe3O4 nanoparticles,” Nanotechnology 16, 1660–1665 (2005).

    Article  Google Scholar 

  6. D. Chao, X. Lu, J. Chen, W. Zhang, and Y. Wei, “Anthranilic acid assisted preparation of Fe3O4-poly(aniline-co-o-anthranilic acid) nanoparticles,” J. Appl. Polym. Sci. 102, 1666–1671 (2006).

    Article  Google Scholar 

  7. P. A. Chernavskii, A. Y. Khodakov, G. V. Pankina, J.-S. Girardon, and E. Quinet, “In situ characterization of the genesis of cobalt metal particles in silica-supported Fischer-Tropsch catalysts using foner magnetic method,” Appl. Catal. 306, 108–119 (2006).

    Article  Google Scholar 

  8. G. P. Karpacheva and S. Zh. Ozkan, RF Patent No. 2426188 (2011).

  9. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Trans. Magn. 17(2), 1247–1248 (1981).

    Article  Google Scholar 

  10. M. I. Ivanovskaya, A. I. Tolstik, D. A. Kotikov, and V. V. Pan’kov, “Structure features of Zn-Mn ferrite synthesized by means of scattering pyrolisys,” Russ. J. Phys. Chem., A.: Focus Chem. 83(12), 2283–2288 (2009).

    Article  Google Scholar 

  11. S. Zh. Ozkan and G. P. Karpacheva, “Novel composite material based on polydiphenylamine and Fe3O4 nanoparticles,” in Organic Chemistry, Biochemistry, Biotechnology and Renewable Resources. Research and Development, Vol. 2: Tomorrow and Perspectives, Ed. by G. E. Zaikov, O. V. Stoyanov, and E. L. Pekhtasheva (Nova Sci. Publ., New York, 2013), Chapter 8, pp. 93–96.

    Google Scholar 

  12. S. Zh. Ozkan, I. S. Eremeev, G. P. Karpacheva, T. N. Prudskova, E. V. Veselova, G. N. Bondarenko, and G. A. Shandryuk, “Polymers of diphenylamine-2-carboxylic acid: synthesis, structure, and properties,” Polymer. Sci. B 55(3–4), 107 (2013).

    Article  Google Scholar 

  13. S. P. Gubin, Magnetic Nanoparticles (Wiley-VCH, Weiheim, 2009).

    Book  Google Scholar 

  14. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, “Magnetic nanoparticles: ways for synthesizing, structure and properties,” Usp. Khim. 74(6), 539–574 (2005).

    Article  Google Scholar 

  15. D. A. Baranov and S. P. Gubin, “Magnetic nanoparticles: achievements and problems of chemical synthesis,” in Proc. 9th Int. Conf. “Solid State Chemistry: Monocrystals, Nanomaterials, Nanotechnologies” Kislovodsk-Stavropol: Izd. Sev. Kav. Gos. Tekhn. Univ., (2009), pp. 12–41.

    Google Scholar 

  16. J. Yue, A. J. Epstein, Z. Zhong, P. K. Gallagher, and A. G. MacDiarmid, “Thermal stabilites of polyanilines,” Synth. Met. 41(1–2), 765–768 (1991).

    Article  Google Scholar 

  17. V. G. Kulkarni, L. D. Campbell, and W. R. Mathew, “Thermal stability of polyaniline,” Synth. Met. 30(3), 321–325 (1989).

    Article  Google Scholar 

  18. A. Boyle, J. F. Penneau, E. Genies, and C. Riekel, “The effect of heating on polyaniline powders studied by realtime synchrotron radiation diffraction, mass spectrometry and thermal analysis,” J. Polym. Sci., Polym. Phys. 30(3), 265–274 (1992).

    Article  Google Scholar 

  19. K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, and E. Hasegawa, “Thermal stability of chemically synthesized polyaniline,” Synth. Met. 62(3), 229–232 (1994).

    Article  Google Scholar 

  20. S. Zh. Ozkan, G. N. Bondarenko, and G. P. Kar- pacheva, “Oxidative polymerization of diphenylamine-2-carboxylic acid: synthesis, structure, and properties of polymers,” Polym. Sci. B 52(5–6), 263 (2010).

    Google Scholar 

  21. K. Ogura, H. Shiigi, M. Nakayama, and A. Ogawa, “Thermal properties of poly(anthranilic acid) (PANA) and humidity-sensitive composites derived from heat-treated PANA and poly(vinyl alcohol),” J. Polym. Sci., Polym. Chem 37(23), 4458–4465 (1999).

    Article  Google Scholar 

  22. L. Ding, X. Wang, and R. V. Gregory, “Thermal properties of chemically synthesized polyaniline (EB) powder,” Synth. Met. 104(2), 73–78 (1999).

    Article  Google Scholar 

  23. X.-H. Wang, Y.-H. Geng, L.-X. Wang, X.-B. Jing, and F.-S. Wang, “Thermal behaviors of doped polyaniline.” Synth. Met. 69(1–3), 265–266 (1995).

    Article  Google Scholar 

  24. T.-Ch. Wen, J.-B. Chen, and A. Gopalan, “Soluble and methane sulfonic acid doped poly(diphenylamine) — synthesis and characterization,” Mater. Lett. 57(2), 280–290 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Eremeev.

Additional information

Original Russian Text © I.S. Eremeev, S.Zh. Ozkan, G.P. Karpacheva, G.N. Bondarenko, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeev, I.S., Ozkan, S.Z., Karpacheva, G.P. et al. Hybrid dispersed magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4 . Nanotechnol Russia 9, 38–44 (2014). https://doi.org/10.1134/S1995078014010054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014010054

Keywords

Navigation