Skip to main content
Log in

A Hybrid Material Based on Poly-3-Amine-7-Methylamine-2-Methylphenazine and Magnetite Nanoparticles

  • Functional Nanomaterials
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

For the first time, under the conditions of in situ oxidative polymerization, a hybrid dispersed magnetic material based on poly-3-amine-7-methylamine-2-methylphenazine (PAMMPh) is obtained in which nanoparticles Fe3O4 are dispersed in an electroactive polymer matrix. According to the results of TEM and SEM, Fe3O4 nanoparticles have sizes of 4 nm < d < 11 nm. Using IR spectroscopy it is established that the chain propagation proceeds via the addition of C–N between 3-amine groups and the para position of phenyl rings relative to nitrogen. The chemical structure, phase composition, and the magnetic and thermal properties of the nanomaterials versus the synthesis conditions are investigated. It is shown that the Fe3O4/PAMMPh nanocomposite material is superparamagnetic and thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses (VCH, New York, 1996).

    Google Scholar 

  2. D. Y. Godovsky, “Device applications of polymernanocomposites,” Adv. Polym. Sci. 153 (15), 163–205 (2000).

    Article  Google Scholar 

  3. G. P. Karpacheva, “Hybrid magnetic nanocomposites including polyconjugated polymers,” Polym. Sci., Ser. C 58, 131–146 (2016).

    Article  Google Scholar 

  4. X. Lu, Y. Yu, L. Chen, H. Mao, H. Gao, J. Wang, W. Zhang, and Y. Wey, “Aniline dimmer-COOH assisted preparation of well-dispersed polyaniline- Fe3O4 nanoparticles,” Nanotecnology 16, 1660–1665 (2005).

    Article  Google Scholar 

  5. D. Chao, X. Lu, J. Chen, W. Zhang, and Y. Wei, “Anthranilic acid assisted preparation of Fe3O4- poly(aniline-co-o-anthranilic acid) nanoparticles,” J. Appl. Polym. Sci. 102, 1666–1671 (2006).

    Article  Google Scholar 

  6. J. Du, Q. Peng, R. Qiao, W. Chen, C. Xu, Z. Shuai, and M. Gao, “Polyaniline/Fe3O4 nanoparticle composite: synthesis and reaction mechanism,” J. Phys. Chem. B 113, 5052–5058 (2009).

    Article  Google Scholar 

  7. G. Qiu, Q. Wang, and M. Nie, “Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation,” J. Appl. Polym. Sci. 102, 2107–2111 (2006).

    Article  Google Scholar 

  8. A. Khan, A. S. Aldwayan, M. Alhoshan, and M. Alsalhi, “Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite,” Polym. Int. 59, 1690–1694 (2010).

    Article  Google Scholar 

  9. S. S. Umare and B. H. Shambharkar, “Synthesis, characterization, and corrosion inhibition study of polyaniline- a-Fe2O3 nanocomposite,” J. Appl. Polym. Sci. 127, 3349–3355 (2013).

    Article  Google Scholar 

  10. N. N. Mallikarjuna, S. K. Manohar, P. V. Kulkarni, A. Venkataraman, and T. M. Aminabhavi, “Novel high dielectric constant nanocomposites of polyaniline dispersed with ?-Fe2O3 nanoparticles,” J. Appl. Polym. Sci. 97, 1868–1874 (2005).

    Article  Google Scholar 

  11. M. Bhaumik, T. Y. Leswifi, A. Maity, V. V. Shrinivasu, and M. S. Onyango, “Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 186, 150–159 (2011).

    Article  Google Scholar 

  12. M. Jokar, R. Foroutani, M. H. Safaralizadeh, and K. Farhadi, “Synthesis and characterization of polyaniline/ Fe3O4 magnetic nanocomposite as practical approach for fluoride removal process,” Ann. Res. Rev. Biol. 4, 3262–3273 (2014).

    Article  Google Scholar 

  13. B. H. Shambharkar and S. S. Umare, “Production and characterization of polyaniline/Co3O4 nanocomposite as a cathode of Zn-polyaniline battery,” Mater. Sci. Eng. B 175, 120–128 (2010).

    Article  Google Scholar 

  14. A. Chen, H. Wang, B. Zhao, J. Wang, and X. Li, “Preparation and characterization of Fe3O4/polypyrrole (PPy) composites,” Acta Mater. Compos. Sin. 21, 157–160 (2004).

    Google Scholar 

  15. L. Li, J. Jiang, and F. Xu, “Novel polyaniline- LiNi0.5La0.02Fe1.98O4 nanocomposites prepared via an in situ polymerization,” Eur. Polym. J. 42, 2221–2227 (2006).

    Article  Google Scholar 

  16. L. Li, J. Jiang, and F. Xu, “Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite-polyaniline nanocomposite,” Mater. Lett. 61, 1091–1096 (2007).

    Article  Google Scholar 

  17. G. D. Prasanna, H. S. Jayanna, and V. Prasad, “Preparation, structural, and electrical studies of polyaniline/ ZnFe2O4 nanocomposites,” J. Appl. Polym. Sci. 120, 2856–2862 (2011).

    Article  Google Scholar 

  18. J. C. Aphesteguy and S. E. Jacobo, “Composite of polyaniline containing iron oxides,” Phys. B (Amsterdam, Neth.) 354, 224–227 (2004).

    Article  Google Scholar 

  19. M. Wan and J. Li, “Synthesis and electrical-magnetic properties of polyaniline composites,” J. Polym. Sci., A 36, 2799–2805 (1998).

    Article  Google Scholar 

  20. Z. Zhang and M. Wan, “Nanostructures of polyaniline composites containing nano-magnet,” Synth. Met. 132, 205–212 (2003).

    Article  Google Scholar 

  21. G. P. Karpacheva and S. Zh. Ozkan, “Dispersed nanocomposite magnetic material and method of its obtaining,” RF Patent No. 2426188, Byull. Izobret. No. 22 (2011).

  22. I. S. Eremeev, S. Zh. Ozkan, G. P. Karpacheva, and G. N. Bondarenko, “Hybrid dispersed magnetic nanomaterial based on polydiphenylamine-2-carbonic acid and Fe3O4,” Nanotechnol. Russ. 9, 38–44 (2014).

    Article  Google Scholar 

  23. G. P. Karpacheva, S. Zh. Ozkan, I. S. Eremeev, G. N. Bondarenko, E. L. Dzidziguri, and P. A. Chernavskii, “Synthesis of hybrid magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4 in the interfacial process,” Eur. Chem. Bull. 3, 1001–1007 (2014).

    Google Scholar 

  24. S. Zh. Ozkan, G. P. Karpacheva, E. L. Dzidziguri, P. A. Chernavskii, G. N. Bondarenko, and G. V. Pankina, “Formation features of hybrid magnetic materials based on polyphenoxazine and magnetite nanoparticles,” J. Res. Updates Polym. Sci. 5, 137–148 (2017).

    Article  Google Scholar 

  25. S. Zh. Ozkan, G. P. Karpacheva, G. N. Bondarenko, and Yu. G. Kolyagin, “Polymers based on 3-amine-7-dimethylamine-2-methylphenazine hydrochloride: synthesis, structure, and properties,” Polym. Sci., Ser. B 57, 106–115 (2015).

    Article  Google Scholar 

  26. Yu. V. Karyakin and I. I. Angelov, Pure Chemical Reagents (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  27. S. Zh. Ozkan and G. P. Karpacheva, “Metal-polymer nanocomposite magnetic material based on poly-3-amine-7-methylamine-2-methylphenazine and Fe3O4 nanoparticles and method of its production,” RU Patent No. 2637333 C2, Byull. Izobret. No. 34 (2017).

  28. E. L. Dzidziguri, “Dimensional characteristics of nanopowders,” Nanotechnol. Russ. 4, 857–870 (2009).

    Article  Google Scholar 

  29. P. A. Chernavskii, G. V. Pankina, and V. V. Lunin, “Magnetometric methods of investigation of supported catalysts,” Russ. Chem. Rev. 80, 579–604 (2011).

    Article  Google Scholar 

  30. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Trans. Magn. 17, 1247–1248 (1981).

    Article  Google Scholar 

  31. J. Tang, X. Jing, B. Wang, and F. Wang, “Infrared spectra of soluble polyaniline,” Synth. Met. 24, 231–238 (1988).

    Article  Google Scholar 

  32. M. Trchova, J. Prokes, and J. Stejskal, “Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline,” Synth. Met. 101, 840–841 (1999).

    Article  Google Scholar 

  33. N. V. Bhat, D. T. Seshadri, and R. S. Phadke, “Simultaneous polymerization and crystallization of aniline,” Synth. Met. 130, 185–192 (2002).

    Article  Google Scholar 

  34. P. S. Rao, S. Subrahmanya, and D. N. Sathyanarayana, “Inverse emulsion polymerization: a new route for the synthesis of conducting polyaniline,” Synth. Met. 128, 311–316 (2002).

    Article  Google Scholar 

  35. Z. Ping, “In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline,” J. Chem. Soc., Faraday Trans. 92, 3063–3067 (1996).

    Article  Google Scholar 

  36. M. I. Ivanovskaya, A. I. Tolstik, D. A. Kotikov, and V. V. Pankov, “The structural characteristics of Zn–Mn ferrite synthesized by spray pyrolysis,” Russ. J. Phys. Chem. A 83, 2081–2086 (2009).

    Article  Google Scholar 

  37. A. Yu. Soloveva, Y. V. Ioni, and S. P. Gubin, “Synthesis of Fe3O4 nanoparticles on the surface of graphene,” Mendeleev Commun. 26, 38–39 (2016).

    Article  Google Scholar 

  38. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, “Magnetic nanoparticles: preparation, structure and properties,” Russ. Chem. Rev. 74, 489–520 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zh. Ozkan.

Additional information

Original Russian Text © S.Zh. Ozkan, G.P. Karpacheva, P.A. Chernavskii, E.L. Dzidziguri, G.N. Bondarenko, G.V. Pankina, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, S.Z., Karpacheva, G.P., Chernavskii, P.A. et al. A Hybrid Material Based on Poly-3-Amine-7-Methylamine-2-Methylphenazine and Magnetite Nanoparticles. Nanotechnol Russia 13, 122–129 (2018). https://doi.org/10.1134/S1995078018020064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018020064

Navigation