Skip to main content
Log in

Theoretical Study of the Electronic and Optical Properties to Design Dye-Sensitivity for Using in Solar Cell Device

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this work, the structural and optoelectronic properties of phenanthrene-1,3,4-thaidiazoles oligomers were calculated using density functional theory (DFT) at B3LYP/6-31G(d) basis set level, to evaluate their possible application as organic semiconductor materials in photovoltaic and solar cell devices. For this reason, the energy gaps, frontier orbital (HOMO, and LUMO) distributions, total energies, Fermi level energies, work functions and maximum wavelength absorption, vertical absorption energies, and oscillator strengths have been investigated and discussed. The structures of phenanthrene-1,3,4-thiadiazoles oligomers are expanded from 1 to 10 thiadiazole monomeric units, to examine the increase of thiadiazole monomeric units on the optoelectronic properties. We observed that increased the number of monomeric units lead to significantly enhance the optoelectronic properties, which caused to decrease the gap energy from 3.69 eV in the structure with one thiadiazole ring just to 2.36 eV with 10 units. These changes give the shift of maximum absorption wavelengths from 376 to 578 nm. Consequently, these molecules have main absorption bands within the solar spectrum, to give the best performance for photovoltaic and organic solar cells devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Mozer and N. S. Sariciftci, C. R. Chim. 9, 568 (2006).

    Article  CAS  Google Scholar 

  2. W. Dehaen, V. A. Bakulev, E. C. Taylor, and J. A. Ellman, The Chemistry of Heterocyclic Compounds, Vol. 62: The Chemistry of 1,2,3-Thiadiazoles (Wiley, Chichester, 2004).

    Google Scholar 

  3. S. Quan, F. Teng, Z. Xu, L. Qian, T. Zhang, D. Liu, et al., J. Lumin. 124 81 (2007).

    Google Scholar 

  4. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Article  CAS  Google Scholar 

  5. R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, et al., Nature (London, U.K.) 397, 121 (1999).

    Article  CAS  Google Scholar 

  6. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, et al., Nature (London, U.K.) 347, 539 (1990).

    Article  CAS  Google Scholar 

  7. C.-L. Pai, C.-L. Liu, W.-C. Chen, and S. A. Jenekhe, Polymer 47, 699 (2006).

    Article  CAS  Google Scholar 

  8. J. Bernede, J. Chilean Chem. Soc. 53, 1549 (2008).

    Article  CAS  Google Scholar 

  9. A. Jenkins, P. Kratochvíl, R. Stepto, and U. Suter, Pure Appl. Chem. 68, 2287 (1996).

    Article  CAS  Google Scholar 

  10. M. Dadsetani, H. Nejatipour, and A. Ebrahimian, J. Phys. Chem. Solids 80, 67 (2015).

    Article  CAS  Google Scholar 

  11. Y. Hu, C.-Y. Li, X.-M. Wang, Y.-H. Yang, and H.-L. Zhu, Chem. Rev. 114, 5572 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. A. K. Jain, S. Sharma, A. Vaidya, V. Ravichandran, and R. K. Agrawal, Chem. Biol. Drug Des. 81, 557 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. A. Frisch, Gaussian 09, User’s Reference (Gaussian Inc., Pittsburgh, 2009).

    Google Scholar 

  14. A. M. Khuodhair, F. N. Ajeel, and M. O. Oleiwi, J. Appl. Phys. Sci. Int. 6, 202 (2016).

    Google Scholar 

  15. X.-D. Kai-Xiong and J. Hong, Chin. J. Spectrosc. Labor. 1, 058 (2012).

    Google Scholar 

  16. E. R. Davidson and D. Feller, Chem. Rev. 86, 681 (1986).

    Article  CAS  Google Scholar 

  17. F. N. Ajeel, A. M. Khuodhair, and S. M. Abdul Almohsin, Curr. Phys. Chem. 6, (2016).

    Google Scholar 

  18. M. H. Al-Abboodi, F. N. Ajeel, and A. M. Khudhair, Phys. E (Amsterdam, Neth.) 88, 1 (2017).

    Article  CAS  Google Scholar 

  19. D. Glossman-Mitnik and A. Márquez-Lucero, J. Mol. Struct.: THEOCHEM 548, 153 (2001).

    Article  CAS  Google Scholar 

  20. B. G. Kim, X. Ma, C. Chen, Y. Ie, E. W. Coir, H. Hashemi, et al., Adv. Funct. Mater. 23, 439 (2013).

    Article  CAS  Google Scholar 

  21. D. Glossman-Mitnik, J. Mol. Struct.: THEOCHEM 549, 285 (2001).

    Article  CAS  Google Scholar 

  22. E. Kymakis and G. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).

    Article  CAS  Google Scholar 

  23. A. Ltaief, R. B. Chaâfabane, A. Bouazizi, and J. Davenas, Mater. Sci. Eng. C 26, 344 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Khudhair.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudhair, A.M., Ajeel, F.N. & Mohammed, M.H. Theoretical Study of the Electronic and Optical Properties to Design Dye-Sensitivity for Using in Solar Cell Device. Russ. J. Phys. Chem. B 12, 645–650 (2018). https://doi.org/10.1134/S1990793118040097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118040097

Keywords

Navigation