Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 1012–1016 | Cite as

Dependence of the Daily N m F2 Values over Mid-Latitude Stations on the Solar and Geomagnetic Activity

  • A. R. AbdullaevEmail author
  • A. V. Markov
  • M. V. Klimenko
  • K. G. Ratovskii
  • N. A. Koren’kova
  • V. S. Leshchenko
  • V. A. Panchenko
Chemical Physics of Atmospheric Phenomena

Abstract

The results of studies of the dependence of the daily electron concentration at maximum of the F2 ionospheric layer in January 2008–2015 on the solar and geomagnetic activity are presented. The solar radio emission flux density indices F10.7 and geomagnetic activity indices A p were averaged over 27 days, and 〈F10.727 and 〈A p 27, respectively, were obtained. Based on the data of three stations, 27-day median (with the middle of January 15) daily N m F2 variations were obtained for 2008–2015. Based on these data, the following paradox was discovered: in January 2014, when the values of the solar activity index F10.7 were larger than in 2015, the dailyN m F2 values were smaller. Averaging over four hours of local daytime (10:00–14:00 LT) gave the daily average January 〈N m F2〉 values for each selected station for each year. To solve this paradox, a double linear regression of 〈N m F2〉 on 〈F10.727 and 〈A p 27 was constructed. Due to this, it was concluded that the contribution of geomagnetic activity to daily January 〈N m F2〉 values is positive. A comparison of the mean square errors of the linear and double linear regressions for 〈F10.727 and 〈F10.781 showed that the use of 〈F10.727 led to smaller errors than the use of 〈F10.781.

Keywords

ionosphere solar activity geomagnetic activity linear regression diurnal variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    A. L. Karpenko and N. I. Manaenkova, Geol. Rundshau 85, 124 (1996).CrossRefGoogle Scholar
  3. 3.
    G. M. Khmyrov, I. A. Galkin, and A. V. Kozlov, AIP Conf. Proc. 974, 175 (2008).CrossRefGoogle Scholar
  4. 4.
    J. Lei, L. Liu, W. Wan, and S.-R. Zhang, Radio Sci. 40, RS2008 (2005).CrossRefGoogle Scholar
  5. 5.
    M. V. Klimenko, N. A. Korenkova, V. S. Leshchenko, et al., in Proceedings of the 39th Annual Seminar on Physics of Auroral Phenomena (Polyar. Geofiz. Inst. RAN, Apatity, 2016), p. 97.Google Scholar
  6. 6.
    K. G. Ratovskii, A. V. Oinats, and A. V. Medvedev, Soln.-Zemn. Fiz. 1 (2), 70 (2015).CrossRefGoogle Scholar
  7. 7.
    K. G. Ratovsky and A. V. Oinats, Earth Planets Space 63, 351 (2011).CrossRefGoogle Scholar
  8. 8.
    B. W. Reinisch, I. A. Galkin, and G. M. Khmyrov, Adv. Radio Sci. 2, 241 (2004).CrossRefGoogle Scholar
  9. 9.
    H. Rishbeth and I. C. F. Müller-Wodarg, Ann. Geophys. 17, 794 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. R. Abdullaev
    • 1
    Email author
  • A. V. Markov
    • 1
  • M. V. Klimenko
    • 1
    • 2
  • K. G. Ratovskii
    • 3
  • N. A. Koren’kova
    • 2
  • V. S. Leshchenko
    • 2
  • V. A. Panchenko
    • 4
  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave PropagationRussian Academy of SciencesKaliningradRussia
  3. 3.Institute of Solar-Terrestrial Physics, Siberian BranchRussian Academy of SciencesIrkutskRussia
  4. 4.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave PropagationRussian Academy of SciencesMoscowRussia

Personalised recommendations