Skip to main content
Log in

Analysis of Molecular Mechanisms of Chronic Irradiation Effects on Electrical Signals in Wheat Plants

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of ionizing radiation (IR) on plants is mainly realized by altering the status of signaling systems and modifying stress signals. Variation potential (VP) is one of the types of electrical signals in plants. IR contributes to an increase in the amplitude of the VP, but the mechanisms of such influence are practically unknown. A possible way to implement changes arising from the action of IR is the regulation of gene expression. In the present work, the changes in the gene expression of participants in the generation and propagation of VP in irradiated plants are investigated. The experiments were performed on 14–15-day-old wheat plants (Triticum aestivum L.) grown under chronic irradiation (source 90Sr–90Y) with a dose rate of 31.3 μGy/h. The maximum accumulated dose was about 11.3 mGy. The irradiated plants showed no changes in the expression of calcium (TPC1), anionic (ALMT1 and CLC1), potassium (AKT1) channels, H+-ATPase (HA1), and NADPH oxidase (RBOHs) genes. A decrease in the expression of the SKOR potassium channel gene was revealed. The potassium channel blocker, tetraethylammonium chloride, caused an increase in response amplitude in control plants comparable to the increase in amplitude in the irradiated group. The obtained results indicate that one of the ways IR influences the electrical signals of plants is to inhibit the expression of the potassium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Mousseau T.A., Møller A.P. 2020. Plants in the light of ionizing radiation: What have we learned from Chernobyl, Fukushima, and other “hot” places? Front. Plant Sci. 11, 552.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang J., Zhang Y., Zhou L., Yang F., Li J., Du Y., Liu R., Li W., Yu L. 2022. Ionizing radiation: Effective physical agents for economic crop seed priming and the underlying physiological mechanisms. Int. J. Mol. Sci. 23 (23), 15212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duarte G.T., Volkova P.Y., Perez F., Horemans N. 2023. Chronic ionizing radiation of plants: An evolutionary factor from direct damage to non-target effects. Plants. 12 (5), 1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grinberg M.A., Vodeneev V.A., Il’in N.V., Mareev E.A. 2023. Laboratory simulation of photosynthesis in a wide range of electromagnetic and radiation environment parameters. Astron. Rep. 67, 71–77.

    Article  Google Scholar 

  5. Kovalchuk I., Molinier J., Yao Y., Arkhipov A., Kovalchuk O. 2007. Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation. Mutat. Res. 624 (1–2), 101–113.

    Article  CAS  PubMed  Google Scholar 

  6. Gudkov S.V., Grinberg M.A., Sukhov V., Vodeneev V. 2019. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact. 202, 8–24.

    Article  CAS  PubMed  Google Scholar 

  7. Volkova P., Bondarenko E., Kazakova E. 2022. Radiation hormesis in plants. Curr. Opin. Toxicol. 30, 100334.

    Article  CAS  Google Scholar 

  8. Hayashi G., Shibato J., Imanaka T., Cho K., Kubo A., Kikuchi S., Satoh K., Kimura S., Ozawa S., Fukutani S., Endo S., Ichikawa K., Agrawal G.K., Shioda S., Fukumoto M., Rakwal R. 2014. Unraveling low-level gamma radiation-responsive changes in expression of early and late genes in leaves of rice seedlings at Iitate Village, Fukushima. J. Hered. 105 (5), 723–738.

    Article  CAS  PubMed  Google Scholar 

  9. Duarte G.T., Volkova P.Y., Geras’kin S.A. 2019. The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone. Environ. Pollut. 250, 618–626.

    Article  CAS  PubMed  Google Scholar 

  10. Vanhoudt N., Vandenhove H., Horemans N., Wannijn J., Hees M., Vangronsveld J., Cuypers A. 2010. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana. J. Environ. Radioact. 101 (11), 923–930.

    Article  CAS  PubMed  Google Scholar 

  11. Alikamanoglu S., Yaycili O., Sen A. 2011. Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol. Trace Elem. Res. 141 (1–3), 283–293.

    Article  CAS  PubMed  Google Scholar 

  12. Macovei A., Garg B., Raikwar S., Balestrazzi A., Carbonera D., Buttafava A., Tuteja N. 2014. Synergistic exposure of rice seeds to different doses of gamma-ray and salinity stress resulted in increased antioxidant enzyme activities and gene specific modulation of TC-NER pathway. Biomed. Res. Int. 2014, 676934.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deng C., Wang, T., Wu J., Xu A., Li H., Liu M., Bian P. 2017. Modulation of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutat. Res. 796, 20–28.

    Article  CAS  PubMed  Google Scholar 

  14. Grinberg M., Gudkov S., Balalaeva I., Gromova E., Sinitsyna Y., Sukhov V., Vodeneev V. 2021. Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress. Environ. Exp. Bot. 184, 104378.

    Article  CAS  Google Scholar 

  15. Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162 (1), 2–12.

    Article  CAS  PubMed  Google Scholar 

  16. Sukhov V., Sukhova E., Vodeneev V. 2019. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol. 146, 63–84.

    Article  CAS  PubMed  Google Scholar 

  17. Johns S., Hagihara T., Toyota M., Gilroy S. 2021. The fast and the furious: Rapid long-range signaling in plants. Plant Physiol. 185 (3), 694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ladeynova M., Kuznetsova D., Mudrilov M., Vodeneev V. 2023. Integration of electrical signals and phytohormones in the control of systemic response. Int. J. Mol. Sci. 24 (1), 847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esch H., Miltenburgett H., Hug O. 1964. The influence of electrical potentials on algal cells by X-rays. Biophys. l, 380–388.

    Google Scholar 

  20. Vodeneev V., Akinchits E., Sukhov V. 2015. Variation potential in higher plants: Mechanisms of generation and propagation. Plant Signal Behav. 10 (9), e1057365.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mudrilov M.A., Ladeynova M.M., Kuznetsova D.V., Vodeneev V.A. 2023. Ion channels in electrical signaling in higher plants. Biochem. (Moscow). 88, 1467–1487.

    Article  CAS  Google Scholar 

  22. Mousavi S.A., Chauvin A., Pascaud F., Kellenberger S., Farmer E.E. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signaling. Nature. 500 (7463), 422–426.

    Article  CAS  PubMed  Google Scholar 

  23. Mangano S., Juarez S.P., Estevez J.M. 2016. ROS regulation of polar growth in plant cells. Plant Physiol. 171 (3), 1593–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demidchik V. 2018. ROS-activated ion channels in plants: Biophysical characteristics, physiological functions, and molecular nature. Int. J. Mol. Sci. 19 (4), 1263.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meena M.K., Prajapati R., Krishna D., Divakaran K., Pandey Y., Reichelt M., Mathew M.K., Boland W., Mithöfer A., Vadasserya J. 2019. The Ca2+ channel CNGC19 regulates arabidopsis defense against spodoptera herbivory. Plant Cell. 31 (7), 153–1562.

    Article  Google Scholar 

  26. Moe-Lange J., Gappel N.M., Machado M., Wudick M.M., Sies C., Schott-Verdugo S.N., Bonus M., Mishra S., Hartwig T., Bezrutczyk M., Basu D., Farmer E.E., Gohlke H., Malkovskiy A., Haswell E.S., Lercher M.J., Ehrhardt D.W., Frommer W.B., Kleist T.J. 2021. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Sci. Adv. 7 (37), eabg4298.

  27. Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92 (4), 1777–1811.

    Article  CAS  PubMed  Google Scholar 

  28. Saito S., Uozumi N. 2019. Guard cell membrane anion transport systems and their regulatory components: An elaborate mechanism controlling stress-induced stomatal closure. Plants. 8 (1), 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cuin T.A., Dreyer I., Michard E. 2018. The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int. J. Mol. Sci. 19 (4), 926.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Choi W.G., Miller G., Wallace I., Harper J., Mittler R., Gilroy S. 2017. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS, and electrical signals. Plant J. 90 (4), 698–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim D.S., Kim J.B., Goh E.I., Kim W.I., Kim S.H., Seob Y.W., Jang C.S., Kang S.Y. 2011. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J. Plant Physiol. 168 (16), 1960–1971.

    Article  CAS  PubMed  Google Scholar 

  32. Qi W., Zhang L., Feng W., Xu H., Wang L., Jiao Z. 2015. ROS and ABA signaling are involved in the growth stimulation induced by low-dose gamma irradiation in Arabidopsis seedling. Appl. Biochem. Biotechnol. 175 (3), 1490–506.

    Article  CAS  PubMed  Google Scholar 

  33. Biermans G., Horemans N., Vanhoudt N., Vandenhove H., Saenen E., Hees M., Wannijn J., Vangronsveld J., Cuypers A. 2015. Biological effects of a-radiation exposure by 241Am in Arabidopsis thaliana seedlings are determined both by dose rate and 241Am distribution. J. Environ. Radioact. 149, 51–63.

    Article  CAS  PubMed  Google Scholar 

  34. Sevriukova O., Kanapeckaite A., Lapeikaite I., Kisnieriene V., Ladygiene R., Sakalauskas V. 2014. Charophyte electrogenesis as a biomarker for assessing the risk from low dose ionizing radiation to a single plant cell. J. Environ. Radioact. 136, 10–15.

    Article  CAS  PubMed  Google Scholar 

  35. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 3 (6), 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  36. Vandenhove H., Vanhoudt N., Cuypers A., Hees M., Wannijn J., Horemans N. 2010. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiol. Biochem. 48 (9), 778–786.

    Article  CAS  PubMed  Google Scholar 

  37. Kim S.H., Song M., Lee K.I., Hwang S.G., Jang C.S., Kim J.B., Kim S.H., Ha B.K., Kang S.Y., Kim D.S. 2012. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol. Biol. Rep. 39 (12), 11 231–11 248.

    Article  Google Scholar 

  38. Goh E.J., Kim J.B., Kim W.J., Ha B.K., Kim S.H., Kang S.Y., Seo Y.W., Kim D.S. 2014. Physiological changes and anti-oxidative responses of Arabidopsis plants after acute and chronic gamma-irradiation. Radiat. Environ. Biophys. 53 (4), 677–693.

    Article  CAS  PubMed  Google Scholar 

  39. Kang G., Yan D., Chen X., Yang L., Zeng R. 2021. HbW-RKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. Physiol. Plant. 171 (1), 151–160.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Mata C., Wang J., Gajdanowicz P., Gonzalez W., Hills A., Donald N., Riedelsberger J., Amtmann A., Dreyer I., Blatt M.R. 2010. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J. Biol. Chem. 285 (38), 29286–29294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adem G.D., Chen G., Shabala L., Chen Z.H., Shabala S. 2020. GORK Channel: A master switch of plant metabolism? Trends Plant Sci. 25 (5), 434–445.

    Article  CAS  PubMed  Google Scholar 

  42. Lacombe B., Pilot G., Gaymard F., Sentenac H., Thibaud J.B. 2000. pH control of the plant outwardly rectifying potassium channel SKOR. FEBS Lett. 466 (2–3), 351–354.

    Article  CAS  PubMed  Google Scholar 

  43. Grinberg M., Nemtsova Y., Ageyeva M., Brilkina A., Vodeneev V. 2023. Effect of low dose ionizing radiation on spatiotemporal parameters of functional responses induced by electrical signals in tobacco plants. Photosynth. Res. 157 (2–3), 119–132.

    Article  CAS  PubMed  Google Scholar 

  44. Falhof J., Pedersen J.T., Fuglsand A.T., Palmgren M. 2016. Plasma membrane H+‑ATPase regulation in the center of plant physiology. Mol. Plant. 9 (3), 323–337.

    Article  CAS  PubMed  Google Scholar 

  45. Röttinger E.M., Hug O. 1972. The effects of low energy X-rays on membrane potential, membrane resistance and action potential of Nitella flexilis. Radiat. Res. 50 (3), 491–503.

    Article  PubMed  Google Scholar 

  46. Marčiulionienė D., Lukšienė B., Montvydienė D., Sakalauskas V., Sevriukova O., Druteikienė R., Jefanova O., Žukauskaitė Z. 2017. Radiocesium phytotoxicity to single cell and higher plants. In: Impact of cesium on plants and the environment. Eds Gupta D.K., Walther C. Cham: Springer, p. 209–230.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 23-24-00340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vodeneev.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no obvious or potential conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Dunina-Barkovskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirogova, P.A., Zdobnova, T.A., Ivanova, A.V. et al. Analysis of Molecular Mechanisms of Chronic Irradiation Effects on Electrical Signals in Wheat Plants. Biochem. Moscow Suppl. Ser. A 18, 36–43 (2024). https://doi.org/10.1134/S1990747824700053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747824700053

Keywords:

Navigation