Skip to main content
Log in

Muscarinic cholinoceptor agonists and antagonists are modulators of the activity of α1-adrenoceptors in the membranes of rat cerebral cortex

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effects of activation and inhibition of muscarinic cholinoceptors by carbachol and atropine on the binding of specific nonselective α1-antagonist [3H]prazosine in synaptosomal membranes of rat cerebral cortex have been studied. It has been shown that the ligand-receptor interaction of α1-adrenoceptors corresponds to the model suggesting the presence of a single receptor pool and the binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were as follows: K d = 1.56 ± 0.17 nM, B max = 30.25 ± 1.78 fmol/mg protein, n = 2. Upon inhibition of muscarinic cholinoceptors by atropine or their activation by carbachol, the radiolabelled ligand is bound to α1-adrenoceptors according to the same model but at n = 1. In the presence of atropine, the sensitivity of α1-adrenoceptors to [3H]prazosine decreases more than twofold (K d = 3.52 ± 0.36 nM) and the concentration of the active receptors is 36% lower (B max = 19.45 ± 1.46 fmol/mg protein). Carbachol does not reduce the affinity of adrenoceptors to the ligand, while the concentration of active receptors decreases like in the case of atropine. It is supposed that α1-adrenoceptors in the membranes of rat cerebral cortex exist as dimers. The modulating effects of atropine and carbachol on the binding of specific antagonist by α1-adrenoceptors are exhibited as changes in the general character of binding (monomerization of α1-adrenoceptors) and as inhibitory effect on the [3H]prazosine binding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H., Cui, W.Y., and Liu, C.H., Modulation by Nicotine on Binding of Cerebral Muscarinic Receptors with Muscarinic Agonist and Antagonist, Acta Pharmacol., 1996, vol. 17, no. 6, pp. 497–499.

    CAS  Google Scholar 

  2. Zwart, R. and Vijverberg, H.P.M., Potentiation and Inhibition of Neuronal Nicotinic Receptors by Atropine: Competitive and Noncompetitive Effects, Mol. Pharmacol., 1997, vol.52, no 5, pp. 886–895.

    CAS  PubMed  Google Scholar 

  3. Hultsträm, M., Lai, E.Y., Ma, Z., Köllskog, O., Patzak, A., and Persson, A.E., Adenosine Triphosphate Increases the Reactivity of the Afferent Arteriole to Low Concentrations of Norepinephrine, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 293, no 6, pp. R2225–R2231.

    Google Scholar 

  4. Koo, S.T., Lim, K.S., Chung, K., Ju, H., and Chung, J.M., Electroacupuncture-Induced Analgesia in a Rat Model of Ankle Sprain Pain is Mediated by Spinal α-Adrenoceptors, Pain,, 2008, vol. 135, nos. 1–2, pp. 11–19.

    Article  CAS  PubMed  Google Scholar 

  5. Diez-Alarcia, R., Pilar-Cuellar, F., Panigua, M.A., Meana, J.J., and Fernandes-Lopez, A., Pharmacological Characterization and Autoradiographic Distribution of α2-Adrenoceptor Antagonist [3H]RX821002 Binding Sites in the Chicken Brain, Neuroscience, 2006, vol. 141, no. 1. pp. 357–369.

    Article  CAS  PubMed  Google Scholar 

  6. Nesterova, L.A., Smurova, E.A., and Manukhin, B.N., The Effect of Adrenotropic Agents on [3H]Quinuclidinyl Benzylate Binding to M-Cholinoceptors of Rat Cerebral Cortex, Biologicheskie membrany (Rus.), 2001, vol. 18, no. 1, pp. 10–17.

    Google Scholar 

  7. Floreani, M., Varani, K., Quintieri, L., and Dorigo, P., Comparison of the Binding Activity of CGP-12177A at Recombinant Rat α1D-Adrenoceptors Expressed in BHK-21 Cell Membranes and α1-Adrenoceptors Present in Rat Cerebral Cortex Membranes, Eur. J. Pharmacol., 2008, vol. 590, nos. 1–3, pp. 303–309.

    Article  CAS  PubMed  Google Scholar 

  8. Manukhin, B.N., Nesterova, L.A., and Smurova, E.A., Effets of the α1-Adrenorecepter Agonist Methoxamine, the M-Cholinoreceptor Antagonist Atropine and the Membranotropic Agent Cocaine on the Binding of [3H]Dihydroalprenolol to β-Adrenoreceprors on Rat Red Blood Cells, Biologicheskie membrany (Rus.), 2001, vol. 18, no. 4, pp. 277–282.

    CAS  Google Scholar 

  9. Henn, S.W. and Henn, F.A., The Identification of Subcellular Fractions of the Central Nervous System, Handbook of Neurochemistry, Lajtha, A., Ed, New York, London, Plenum Press, 1982, pp. 147–161.

    Google Scholar 

  10. Nesterova, L.A., Smurova, E.A., and Manukhin, B.N., Characteristics of [3H]Quinuclidinyl Benzylate Binding to M-Cholinoceptors of Rat Cerebral Cortex, Dokl. AN SSSR (Rus.), 1995, vol. 343, no. 2, pp. 268–271.

    CAS  Google Scholar 

  11. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.I.J., Protein Measurement with the Folin Phenol Regent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  12. Manukhin, B.N., Nesterova, L.A., and Smurova, E.A., Characteristics of the Kinetics of Interaction between β-adrenoceptors of Rat Erythrocytes and Specific Blocker Propranolol, Membr. Cell Biol., 1995, vol. 8, pp. 509–516.

    Google Scholar 

  13. Manukhin, B.N., Nesterova, L.A., Smurova, E.A., and Kichikulova, T.P., Analysis of Radiolabeled Ligand Interactions with Specific Receptors, Biologicheskie membrany (Rus.), 1999, vol. 16, no. 3, pp. 541–555.

    CAS  Google Scholar 

  14. Manukhin, B.N., Nesterova, L.A., Smurova, E.A., and Kichiculova, T.P., An Aproach to Analysis of Radiolabeled Ligand Interactions with Specific Receptors, Eur. J. Pharmacol., 1999, vol. 386, nos. 2–3. pp. 273–288.

    Google Scholar 

  15. Manukhin, B.N. and Nesterova, L.A., The Effect of Nitric Oxide on [3H]Quinuclidinilbenzilate Binding to Muscarinic Cholinoceptors of Rat Cerebral Cortex, Biologicheskie membrany (Rus.), 2004, vol. 21, no.1, pp. 19–23.

    CAS  Google Scholar 

  16. Dixon, M. and Webb, A., Fermenty (Enzymes), Moscow, Mir, 1982, vol. 3.

    Google Scholar 

  17. Keleti, T., Osnovy fermentativnoi kinetiki (Basics of Enzyme Kinetics), Moscow, Mir, 1990.

    Google Scholar 

  18. Hill, A.V., The Possible Effects of the Aggregation of the Molecules of Hemoglobin on its Dissociatin Curves, J. Physiol., 1910, vol. 40, Proceed. Physiol. Soc., pp. iv–vii.

    Google Scholar 

  19. Berezov, T.T. and Korovkin, B.F., Biologicheskaya Khimiya (Biological Chemistry), Meditsyna, Moscow, 2007.

    Google Scholar 

  20. Herrick-Davis, K., Grinde, E., Harrigan, T.J., and Mazurkiewicz, J.E., Model of wild-type 5-HT2C Receptor Inactivation Following Heterodimerization with S138R 5-HT2C Receptors, J. Biol. Chem., 2005, vol. 280, no 48, pp. 40144–40151.

    Article  CAS  PubMed  Google Scholar 

  21. Avdonin, P.V., Structure and Signaling Properties of G Protein-Coupled Receptor Complexes, Biologicheskie membrany (Rus.), 2005, vol. 22, no. 1, pp. 3–26.

    CAS  Google Scholar 

  22. Uberti, M.A., Hall, R.A., and Minneman, K.P., Subtipe-Specific Dimerization of α1-Adrenoceptors: Effects on Receptor Expression and Pharmacological Properties, Mol. Pharmacol., 2003, vol. 64, no. 6, pp. 1379–1390.

    Article  CAS  PubMed  Google Scholar 

  23. Small, K.M., Schwarb, M.R., Glinka, C., Theiss, C.T., Brown, K.M., Seman, C.A., and Liggett, S.B., α1A- and α2C-Adrenergic Receptors form Homo-and Heterodimers: the Heterodimeric State Impairs Agonist-Promoted GRK Phosphorylation and β-Arrestin Recruitment, Biochemistry, 2006, vol. 18, no. 45, pp. 4760–4767.

    Article  Google Scholar 

  24. Hague, C., Lee, S.E., Chen, Z., Prinster, S.C., Hall, R.A., and Minneman, K.P., Heterodimers of α1B- and α1D-Adrenergic Receptors Form a Single Functional Entity, Mol. Pharmacol., 2006, vol. 69, no 1, pp. 45–55.

    CAS  PubMed  Google Scholar 

  25. Wreggett, K.A. and Wells, J.W., Cooperativity Manifest in the Binding Properties of Purified Cardiac Muscarinic Receptors, J. Biol. Chem., 1995, vol. 270, no 38, pp. 22488–22499.

    Article  CAS  PubMed  Google Scholar 

  26. Dunn, S.M. and Raftery, M.A., Agonist Binding to the Torpedo Acetylcholine Receptor. 2. Complexities Revealed by Association Kinetics, Biochemistry, 1997, vol. 36, no 13, pp. 3846–3853.

    Article  CAS  PubMed  Google Scholar 

  27. Cidiac, P., Green, M.A., Pawagi, A.B., and Wells, J.W., Cardiac Muscarinic Receptors. Cooperativity as the Basis for Multiple States of Affinuty. Biochemistry, 1997, vol. 36, no. 24, pp. 7361–7379.

    Article  Google Scholar 

  28. Lazareno, S. and Birdsall, N.J., Detection, Quantitation, and Verification of Allosteric Interactions of Agents with Labeled and Unlabeled Ligands at G Protein-Coupled Receptors: Interactions of Strychnine and Acetylcholine at Muscarinic Receptors. Mol. Pharmacol., 1995, vol. 48, no 2, pp. 362–378.

    CAS  PubMed  Google Scholar 

  29. Fowler, C.J., Vedin, V., and Sjoberg, E., Evidence for Cooperative Binding of (−) Isoproterenol to Rat Brain β1-Adrenergic Receptors. Biochem. Biophys. Res. Commun., 1999, vol. 257, no 2, pp. 629–634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Manukhin.

Additional information

Original Russian Text © L.A. Nesterova, B.N. Manukhin, 2010, published in Biologicheskie Membrany, 2010, Vol. 27, No. 2, pp. 189–194.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterova, L.A., Manukhin, B.N. Muscarinic cholinoceptor agonists and antagonists are modulators of the activity of α1-adrenoceptors in the membranes of rat cerebral cortex. Biochem. Moscow Suppl. Ser. A 4, 206–211 (2010). https://doi.org/10.1134/S1990747810020121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747810020121

Key words

Navigation