Skip to main content
Log in

Modulation of alfa-adrenoceptor activity by beta-adrenoceptor agonists and antagonists in rat brain cortex membranes

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The influence of β-adrenoceptor activation and inhibition by isoprenaline and propranolol on the specific binding of nonselective α1- and α2-adrenoceptor antagonists [3H]prazosin and [3H]RX821002 in rat cerebral cortex subcellular membrane fractions was studied. It was established that for the α1- and α2-adrenoceptors the ligand–receptor interaction corresponds to the model of one affinity pool of receptors and binding of two ligand molecules by one dimer receptor. The parameters of [3H]prazosin binding to α1-adrenoceptors were: K d = 1.85 ± 0.16 nM, B max = 31.14 ± 0.35 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.57 ± 0.27 nM, B max = 7.2 ± 1.6 fmol/mg protein, n = 2. When β-adrenoceptors were activated by isoprenaline, the binding of radiolabelled ligands with α1- and α2-adrenoceptors occurred according to the same model. The affinity to [3H]prazosin and the concentration of active α1-adrenoceptors increased by 27% (K d = 1.36 ± 0.03 nM) and 84% (B max = 57.37 ± 0.28 fmol/mg protein), respectively. The affinity of α2-adrenoceptors to [3H]RX821002 decreased by 56% (K d = 3.55 ± 0.02 nM), and the concentration of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg protein). Propranolol alters the binding character of both ligands. For [3H]prazosin and [3H]RX821002, two pools of receptors were detected with the following parameters: K d1 = 1.13 ± 0.09, K d2 = 6.07 ± 1.06 nM, B m1 = 11.36 ± 1.77, Bm2 = 51.09 ± 0.41 fmol/mg protein, n = 2 and K d1 = 0.61 ± 0.02, K d2 = 3.41 ± 0.13 nM, B m1 = 1.88 ± 0.028, B m2 = 9.27 ± 0.08 fmol/mg protein, n = 2, respectively. The concentration of active receptors (B max) increased twofold for both ligands. It was suggested that α1- and α2-adrenoceptors in rat cerebral cortex subcellular membrane fractions exist as dimers. A modulating influence of isoprenaline and propranolol on the specific binding of the antagonists to α1- and α2- adrenoceptors was revealed, which was manifested in the activating effect on the [3H]prazosin binding parameters, in the inhibitory effect on the [3H]RX821002 binding parameters, and in a change of the general character of binding for both ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nomura Y., Kawai M., Segawa T. 1984. The interaction between β-and α2-adrenoceptors in cerebral cortical membranes: Isoproterenol-induced increase in [3H]clonidine binding in rats. Brain Res. 302 (1), 101–109.

    Article  CAS  PubMed  Google Scholar 

  2. Brahmadevara N., Shaw A.M., MacDonald A. 2004. α1-Adrenoceptor antagonist properties of CGP 12177A and other β-adrenoceptor ligands: Evidence against β3-or atypical β-adrenoceptors in rat aorta. Br. J. Pharmacol. 142 (4), 781–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Floreani M., Varani K., Quintieri L., Borea P.A., Dorigo P. 2008. Comparison of the binding affinity of CGP-12177A at recombinant rat α1D-adrenoceptors expressed in BHK-21 cell membranes and α1-adrenoceptors present in rat cerebral cortex membranes. Eur. J. Pharmacol. 590 (1–3), 303–309.

    Article  CAS  PubMed  Google Scholar 

  4. Rozec B., Quang T.T., Noireaud J., Gauthier C. 2006. Mixed β3-adrenoceptor agonist and α1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br. J. Pharmacol. 147 (7), 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. González S., Moreno-Delgado D., Moreno E., Pérez-Capote K., Franco R., Mallol J., Cortés A., Casadó V., Lluís C., Ortiz J., Canela F.E.S., McCormick P.J. 2012. Circadian-related heteromerization of adrenergic and dopamine D4 receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol. 10(6), e1001347. doi 10.1371/journal.pbio.1001347

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manukhin B.N., Nesterova L.A., Smurova E.A. 2001. Effects of the α1-adrenoceptor agonist methoxamine, the M-cholinoceptor antagonist atropine and the membranotropic agent cocaine on the bindingof [3H]dihydroalprenolol to β-adrenoceptors on rat red blood cells. Biol. Membrany (Rus.). 18 (4), 277–282.

    CAS  Google Scholar 

  7. Diez-Alarcia R., Pilar-Cuellar F., Panigua M.A., Meana J.J., Fernandes-Lopez A. 2006. Pharmacological characterization and autoradiographic distribution of α2-adrenoceptor antagonist [3H]RX821002 binding sites in the chicken brain. Neuroscience. 141 (1), 357–369.

    Article  CAS  PubMed  Google Scholar 

  8. Carretiero D.C., Almeida R.S., Fior-Cardi D.R. 2008. Adenosine modulates α2-adrenergic receptors within specific subnuclei of nucleus tractus solitarius in normotensive and spontaneously hypertensive rats. Hypertens. Res. 31 (12), 2177–2186.

    Article  Google Scholar 

  9. Abelson K.S., Hoglund A.U. 2004. The effects of the α2-adrenergic receptor agonists clonidine and rilmenidine, and antagonists yohimbine and efaroxan, on the spinal cholinergic receptor system in the rat. Clin. Pharmacol. Toxicol. 94 (4), 153–160.

    Article  CAS  Google Scholar 

  10. Estato V., Araujo C.V., Bousquet P., Tibirica E. 2004. Effects of centrally acting antihypertensive drugs on the microcirculation of spontaneously hypertensive rats. Braz. J. Med. Biol. Res. 37 (10), 1541–1549.

    Article  CAS  PubMed  Google Scholar 

  11. Ciranna L., Licata F., Li Volsi G., Santangelo F. 2004. α2-and β-adrenoceptors differentially modulate GABAA-and GABAB-mediated inhibition of red nucleus neuronal firing. Exp. Neuronal. 185 (2), 297–304.

    Article  CAS  Google Scholar 

  12. Ware T.D., Paul D. 2000. Cross-tolerance between analgesia produced by xylazine and selective opioid receptor subtype treatments. Eur. J. Pharmacol. 389 (2–3), 181–185.

    Article  CAS  PubMed  Google Scholar 

  13. Takada K., Clarc D.J., Davies M.F., Tonner P.H., Krause T.K., Dtrtaccini E., Maze M. 2002. Meperidine exerts agonist activity at the α2B-adrenoceptor subtype. Anestesiology. 96 (6), 1420–1426.

    Article  CAS  Google Scholar 

  14. Henn S.W., Henn F.A. 1982. The identification of subcellular fractions of the central nervous system. In: Handbook of neurochemistry. Ed. Lajtha A. New York, London: Plenum Press, p. 147–161.

    Google Scholar 

  15. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.I.J. 1951. Protein measurement with the Folin phenol regent. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  16. Manukhin B.N., Nesterova L.A., Smurova E.A. 1994. Characteristics of the kinetics of interaction between β-adrenoceptors of rat erythrocytes and a specific blocker propranolol. Biol. Membrany (Rus.). 11 (5), 489–485.

    CAS  Google Scholar 

  17. Manukhin B.N., Nesterova L.A., Smurova E.A., Kichiculova T.P. 1999. An approach to analysis of radiolabeled ligand interactions with specific receptors. Eur. J. Pharmacol. 386 (2–3), 273–288.

    Google Scholar 

  18. Manukhin B.N., Nesterova L.A. 2004. Effects of nitrogen oxide on (3H)-quinuclidinyl benzilate binding by rat brain cortex membrane muscarinic cholinoceptors. Biol. Membrany (Rus.). 21 (1), 19–23.

    CAS  Google Scholar 

  19. Dixon M., Webb E. 1982. Fermenty (Enzymes). Moscow: Mir, vol. 3.

    Google Scholar 

  20. Keleti T. 1990. Osnovi fermentativnoi kinetiki (Basics of enzyme kinetics). Moscow: Mir.

    Google Scholar 

  21. Herrick-Davis K., Grinde E., Harrigan T.J., Mazurkiewicz J.E. 2005. Model of wild-type 5-HT2C receptor inactivation following heterodimerization with S138R 5-HT2C receptors. J. Biol. Chem. 28 (48), 40144–40151.

    Article  Google Scholar 

  22. Avdonin P.V. 2005. Structure and signal properties of the G-protein coupled receptor complexes. Biol. Membrany (Rus.). 22 (1), 3–26.

    CAS  Google Scholar 

  23. Uberti M.A., Hall R.A., Minneman K.P. 2003. Subtipe-specific dimerization of α1-adrenoceptors: Effects on receptor expression and pharmacological properties. Mol. Pharmacol. 64 (6), 1379–1390.

    Article  CAS  PubMed  Google Scholar 

  24. Small K.M., Schwarb M.R., Glinka C., Theiss C.T., Brown K.M., Seman C.A., Liggett S.B. 2006. α1A-and α2C-adrenergic receptors form homo-and heterodimers: The heterodimeric state impairs agonist-promoted GRK phosphorylation and β-arrestin recruitment. Biochemistry. 45 (15), 4760–4767.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou F., Filipeanu C.M., Duvernay M.T., Wu G. 2006. Cell-surface targeting of α2-adrenergic receptors–inhibition by transport deficient mutant through dimerization. Cell Signal. 18 (3), 318–327.

    Article  CAS  PubMed  Google Scholar 

  26. Hague C., Lee S.E., Chen Z., Prinster S.C., Hall R.A., Minneman K.P. 2006. Heterodimers of α1B-and α1Dadrenergic receptors form a single functional entity. Mol. Pharmacol. 69 (1), 45–55.

    CAS  PubMed  Google Scholar 

  27. Nesterova L.A., Smurova E.A., Manukhin B.N. 1995. Characteristics of (3H)-quinuclidinyl benzilate binding to M-cholinoceptors of rat brain membrane. Dokl. Akad. Nauk (Rus.). 343 (2), 268–271.

    CAS  Google Scholar 

  28. Wreggett K.A., Wells J.W. 1995. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem. 270 (38), 22488–22499.

    Article  CAS  PubMed  Google Scholar 

  29. Dunn S.M., Raftery M.A. 1997. Agonist binding to the Torpedo acetylcholine receptor. 2. Complexities revealed by association kinetics. Biochemistry. 36 (13), 3846–3853.

    Article  CAS  PubMed  Google Scholar 

  30. Cidiac P., Green M.A., Pawagi A.B., Wells J.W. 1997. Cardiac muscarinic receptors. Cooperativity as the basis for multiple states of affinity. Biochemistry. 36 (24), 7361–7379.

    Article  Google Scholar 

  31. Lazareno S., Birdsall N.J. 1995. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: Interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 48 (2), 362–378.

    CAS  PubMed  Google Scholar 

  32. Fowler C.J., Vedin V., Sjoberg E. 1999. Evidence for cooperative binding of (–)isoproterenol to rat brain β1-adrenergic receptors. Biochem. Biophys. Res. Commun. 257 (2), 629–634.

    Article  CAS  PubMed  Google Scholar 

  33. Nesterova L.A., Smurova E.A., Manukhin B.N. 2001. Influence of adrenotropic compounds on (3H)-quinuclidinyl benzilate binding by rat brain cortex cholinoceptors. Biol. Membrany (Rus.). 18 (1), 10–17.

    Google Scholar 

  34. Kobilka B.K., Deupi X. 2007. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406.

    Article  CAS  PubMed  Google Scholar 

  35. Kenakin T. 2004. Allosteric modulators: The new generation of receptor antagonist. Mol. Interv. 4, 222–229.

    Article  CAS  PubMed  Google Scholar 

  36. Kenakin T. 2007. Allosteric agonist modulators. J. Recept. Signal Transduct. Res. 27, 247–259.

    Article  CAS  PubMed  Google Scholar 

  37. Leach K., Sexton P.M., Christopoulos A. 2007. Allosteric GPCR modulators: Taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389.

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz T.W., Holst B. 2007. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: Where do they bind and how do they act? Trends Pharmacol. Sci. 28, 366–373.

    Article  CAS  PubMed  Google Scholar 

  39. Kenakin T., Miller L.J. 2010. Seven transmembrane receptors as shape-shifting proteins: The impact of allosteric modulation and functional selectivity on new drug. Pharmacol. Rev. 62 (2), 265–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Nesterova.

Additional information

Original Russian Text © L.A. Nesterova, O.V. Boiko, B.N. Manukhin, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 4, pp. 252–262.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterova, L.A., Boiko, O.V. & Manukhin, B.N. Modulation of alfa-adrenoceptor activity by beta-adrenoceptor agonists and antagonists in rat brain cortex membranes. Biochem. Moscow Suppl. Ser. A 10, 278–286 (2016). https://doi.org/10.1134/S1990747816030168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816030168

Keywords

Navigation