Skip to main content
Log in

Plasmalemma dicarboxylate transporter of Saccharomyces cerevisiae is involved in citrate and succinate influx and is modulated by pH and cations

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Succinate and citrate transport into yeast (Saccharomyces cerevisiae) cells was studied by measuring substrate oxidation rates in the presence and in the absence of effective impermeable oxidation inhibitors O-palmitoyl-L-malate and 2-undecyl malonate. Linearity of the Dixon plot for 2-undecyl malonate suggests that this inhibitor blocked the rate-limiting step upon oxidation of both substrates, which was, most probably, transport of these substrates across the plasma membrane (due to inability of the inhibitor to penetrate into the membrane). This approach allowed fast (within 30–40 min) measurement of kinetic parameters of the transporter in individual samples without losing control over limiting conditions. In case of succinate transport, the limiting rate of succinate oxidation (V max) depended on pH and increased monotonously from near-zero at pH 4.5 to the maximum level at pH 7.5. At pH 5.5, succinate and citrate transport was insensitive to the protonophore FCCP, being activated by Na+ ions and competitively inhibited by 2-undecyl malonate and K+ ions. Values of K i for 2-undecyl malonate were similar for both substrates. These data suggest that citrate and succinate influx is mediated by a common plasma membrane transporter. This is not typical of fungi. At pH 6.5, Tris+, K+ and Na+ had no effect on succinate oxidation. In monosodium media pH increase was accompanied by a decrease of succinate K m due to higher proportion of the dianionic form of the substrate. Atypical substrate specificity and mechanisms of functional activity of the dicarboxylate transporter in plasma membrane of S. cerevisiae are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pajor, A.M., Molecular Properties of the SLC13 Family of Dicarboxylate and Sulfate Transporters, Pflügers Arch., 2006, vol. 451, pp. 597–605.

    Article  PubMed  CAS  Google Scholar 

  2. Diatloff, E., Roberts, M., Sanders, D., and Roberts, S.K., Characterization of Anion Channels in the Plasma Membrane of Arabidopsis Epidermal Root Cells and the Identification of a Citrate-Permeable Channel Induced by Phosphate Starvation, Plant Physiol., 2004, vol. 136, pp. 4136–4149.

    Article  PubMed  CAS  Google Scholar 

  3. Lolkema, J.S., Sobczak, I., and Slotboom, D.J., Secondary Transporters of the 2HCT Family Contain Two Homologous Domains with Inverted Membrane Topology and Trans Re-Entrant Loops, FEBS J., 2005, vol. 272, pp. 2334–2344.

    Article  PubMed  CAS  Google Scholar 

  4. Aliverdieva, D.A., Mamaev, D.V., Bondarenko, D.I., and Shol’ts, K.F., Properties of Yeast Saccharomyces cerevisiae Plasma Membrane Dicarboxylate Transporter, Biokhimiya (Rus.), 2006, vol. 71, no. 10, pp. 1430–1440.

    Google Scholar 

  5. Sousa, M.J., Mota, M., and Leão, C., Transport of Malic Acid in the Yeast Schizosaccharomyces pombe: Evidence for a Proton-Dicarboxylate Symport, Yeast, 1992, vol. 8, pp. 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  6. Corte-Real, M., Leão, C., and van Uden, N., Transport of L-Malic Acid and Other Dicarboxylic Acids in the Yeast Candida sphaerica, Appl. Microbiol. Biotechnol., 1989, vol. 31, pp. 551–555.

    Article  CAS  Google Scholar 

  7. Harrod, C.J., Rodriges, S.B., and Thornton, R.J., Derepressed Utilization of L-Malic Acid and Succinic Acid by Mutants of Pachysolen tannophilus, J. Ind. Microbiol. Biotechnol., 1997, vol. 18, pp. 379–383.

    Article  PubMed  CAS  Google Scholar 

  8. Skulachev, V.P., Bacterial Energetics at High pH: What Happens to the H+ Cycle When the Extracellular H+ Concentration Decreases? Novartis Found. Symp., 1999, vol. 221, pp. 200–213; Discussion, pp. 213–217.

    Article  PubMed  CAS  Google Scholar 

  9. Van der Rest, M.E., Kaminga, A.H., Nakano, A., Anraku, Y., Poolman, B., and Konings, W.N., The Plasma Membrane of Saccharomyces cerevisiae: Structure, Function, and Biogenesis, Microbiol. Rev., 1995, vol. 59, pp. 304–322.

    PubMed  Google Scholar 

  10. Marquez, J.A. and Serrano, R., Multiple Transduction Pathways Regulate the Sodium-Extrusion Gene PMR2/ENA1 during Salt Stress in Yeast, FEBS Lett., 1996, vol. 382, pp. 89–92.

    Article  PubMed  CAS  Google Scholar 

  11. Aliverdieva, D.A., Mamaev, D.V., Bondarenko, D.I., and Shol’ts, K.F., Topography of the Active Site of the Saccharomyces cerevisiae Plasmalemmal Dicarboxylate Transporter Studied Using Lipophilic Derivatives of Its Substrates, Biokhimiya (Rus.), 2007, vol. 72, pp. 325–337.

    Google Scholar 

  12. Aliverdieva, D.A., Mamaev, D.V., Lagutina, L.S., and Shol’ts, K.F., Specific Features of Changes in Levels of Endogenous Respiration Substrates in Saccharomyces cerevisiae Cells at Low Temperature, Biokhimiya (Rus.), 2006, vol. 71, pp. 50–58.

    Google Scholar 

  13. Machicka, B., Grochowalska, R., Boniewska-Bernacka, E., Slominska, L., and Lachowicz, T.M., Acid Excreting Mutants of Yeast Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 2004, vol. 325, pp. 1030–1036.

    Article  Google Scholar 

  14. Abramov, Sh. A., Kotenko, S.Ts., Dalgatova, B.I., Mammaev, A.T., and Peisakhova, D.S., The USSR Author’s Patent Certificate no. 1294998, Byull. Izobret., 1987, no. 3, p.111.

  15. Shol’ts, K.F. and Ostrovskii, D.N., An Amperometric Cell for Oxygen Assays, Metody Sovremennoi Biokhimii (Rus.), Kretovich, V.L. and Shol’ts, K.F., Eds., Moscow, 6666Nauka, 1975, pp. 52–58.

    Google Scholar 

  16. Bondarenko, D.I., Aliverdieva, D.A., Mamaev, D.V., and Shol’ts, K.F., Determination of Yeast Plasma Membrane Permeability for Amphiphilic Compounds, Doklady RAN (Rus.), 2004, vol. 399, pp. 693–695.

    Google Scholar 

  17. Beauvoit, B., Rigoulet, M., Raffard, G., Canioni, P., and Guérin, B., Differential Sensitivity of the Cellular Compartments of Saccharomyces cerevisiae to Protonophoric Uncoupler under Fermentative and Respiratory Energy Supply, Biochemistry, 1991, vol. 30, pp. 11212–11220.

    Article  PubMed  CAS  Google Scholar 

  18. Akita, O., Nishimori, C., Shimamoto, T., Fujii, T., and Iefuji, H., Transport of Pyruvate in Saccharomyces cerevisiae and Cloning of the Gene Encoded Pyruvate Permease, Biosci. Biotechnol. Biochem., 2000, vol. 64, pp. 980–984.

    Article  PubMed  CAS  Google Scholar 

  19. Nalecz, M.J., Nalecz, K.A., and Azzi, A., Purification and Functional Characterisation of the Pyruvate (Monocarboxylate) Carrier from Baker’s Yeast Mitochondria (Saccharomyces cerevisiae), Biochim. et Biophys. Acta, 1991, vol. 1079, pp. 87–95.

    CAS  Google Scholar 

  20. Terada, H. Uncouplers of Oxidative Phosphorylation, Env. Health Persp., 1990, vol. 87, pp. 213–218.

    Article  CAS  Google Scholar 

  21. Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research, 3rd Ed., Oxford, Clarendon Press, 1986.

    Google Scholar 

  22. Purwin, C., Nicolay, K., Scheffers, W.A., and Holzer, H., Mechanism of Control of Adenylate Cyclase Activity in Yeast by Fermentable Sugars and Carbonyl Cyanide m-Chlorophenylhydrazone, J. Biol. Chem., 1986, vol. 261, pp. 8744–8749.

    PubMed  CAS  Google Scholar 

  23. Pena, A., Cinco, G., Gomez-Puyou, T., and Tuena, M., Effect of the pH of the Incubation Medium on Glycolysis and Respiration in Saccharomyces cerevisiae, Arch. Biochem. Biophys., 1972, vol. 153, pp. 413–425.

    Article  PubMed  CAS  Google Scholar 

  24. De Nadal, E., Calero, F., Ramos, J., and Arino, J., Biochemical and Genetic Analyses of the Role of Yeast Casein Kinase 2 in Salt Tolerance, J. Bacteriology, 1999, vol. 181, pp. 6456–6462.

    Google Scholar 

  25. Grobler, J., Bauer, F., Subden, R.E., van Vuuren, H.J.J., The mae1 Gene of Schizosaccharomyces pombe Encodes a Permease for Malate and Other C4 Dicarboxylic Acids, Yeast, 1995, vol. 11, pp. 1485–1491.

    Article  PubMed  CAS  Google Scholar 

  26. Cássio, F. and Leão, C., A Comparative Study on the Transport of L-Malic Acid and Other Short-Chain Carboxylic Acids in the Yeast Candida utilis: Evidence for a General Organic Acid Permease, Yeast, 1993, vol. 9, pp. 743–752.

    Article  PubMed  Google Scholar 

  27. Deves, R. and Boyd, C.A.R., Transporters for Cationic Amino Acids in Animal Cells: Discovery, Structure, and Function, Physiol. Rev., 1998, vol. 78, pp. 487–545.

    PubMed  CAS  Google Scholar 

  28. Gallmetzer, M., Muller, B., and Burgstaller, W., Net Efflux of Citrate in Penicillium simplicissimum Is Mediated by a Transport Protein, Arch. Microbiol., 1998, vol. 169, pp. 353–359.

    Article  PubMed  CAS  Google Scholar 

  29. Turoscy, V. and Cooper, T.G., Allantoate Transport in Saccharomyces cerevisiae, J. Bacteriol., 1979, vol. 140, pp. 971–979.

    PubMed  CAS  Google Scholar 

  30. Turoscy, V. and Cooper, T.G., Allantoate Transport in Saccharomyces cerevisiae. Ureidosuccinate Is Transported by the Allantoate Transport System in Saccharomyces cerevisiae, J. Bacteriol., 1987, vol. 169, pp. 2598–2600.

    PubMed  CAS  Google Scholar 

  31. Regenberg, B., Holmberg, S., Olsen, L.D., and Kielland-Brandt, M.C., Dip5p Mediates High-Affinity and High-Capacity Transport of L-Glutamate and L-Aspartate in Saccharomyces cerevisiae, Curr. Genet., 1998, vol. 33, pp. 171–177.

    Article  PubMed  CAS  Google Scholar 

  32. McDonald, A.E., Niere, J.O., and Plaxton, W.C., Phosphite Disrupts the Acclimation of Saccharomyces cerevisiae to Phosphate Starvation, Can. J. Microbiol., 2001, vol. 47, pp. 969–978.

    Article  PubMed  CAS  Google Scholar 

  33. Ozcan, S., Dover, J., Rosenwald, A.G., Wolfl, S., and Johnston, M., Two Glucose Transporters in Saccharomyces cerevisiae Are Glucose Sensors That Generate a Signal for Induction of Gene Expression, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 12428–12432.

    Article  PubMed  CAS  Google Scholar 

  34. Shol’ts, K.F., Substrate Transport in Mitochondria, Uspekhi Biologicheskoi Khimii (Rus.), 1994, vol. 34, pp. 167–187.

    Google Scholar 

  35. Velasco, I., Tenreiro, S., Calderon, I.L., and Andre, B., Saccharomyces cerevisiae Aqr1 Is an Internal Membrane Transporter Involved in Excretion of Amino Acids, Eukaryot. Cell, 2004, vol. 3, pp. 1492–1503.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aliverdieva.

Additional information

Original Russian Text © D.A. Aliverdieva, D.V. Mamaev, D.I. Bondarenko, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 6, pp. 446–457.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliverdieva, D.A., Mamaev, D.V. & Bondarenko, D.I. Plasmalemma dicarboxylate transporter of Saccharomyces cerevisiae is involved in citrate and succinate influx and is modulated by pH and cations. Biochem. Moscow Suppl. Ser. A 2, 354–364 (2008). https://doi.org/10.1134/S1990747808040090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808040090

Keywords

Navigation