Skip to main content
Log in

Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The SLC13 gene family consists of five members in humans, with corresponding orthologs from different vertebrate species. All five genes code for sodium-coupled transporters that are found on the plasma membrane. Two of the transporters, NaS1 and NaS2, carry substrates such as sulfate, selenate and thiosulfate. The other members of the family (NaDC1, NaDC3, and NaCT) are transporters for di- and tri-carboxylates including succinate, citrate and α-ketoglutarate. The SLC13 transporters from vertebrates are electrogenic and they produce inward currents in the presence of sodium and substrate. Substrate-independent leak currents have also been described. Structure–function studies have identified the carboxy terminal half of these proteins as the most important for determining function. Transmembrane helices 9 and 10 may form part of the substrate permeation pathway and participate in conformational changes during the transport cycle. This review also discusses new members of the SLC13 superfamily that exhibit both sodium-dependent and sodium-independent transport mechanisms. The Indy protein from Drosophila, involved in determining lifespan, and the plant vacuolar malate transporter are both sodium-independent dicarboxylate transporters, possibly acting as exchangers. The purpose of this review is to provide an update on new advances in this gene family, particularly on structure–function studies and new members of the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Artigas P, Gadsby DC (2003) Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc Natl Acad Sci USA 100:501–505

    Article  PubMed  Google Scholar 

  2. Aruga S, Pajor AM, Nakamura K, Liu L, Moe OW, Preisig PA, Alpern RJ (2004) OKP cells express the Na+-dicarboxylate cotransporter NaDC-1. Am J Physiol Cell Physiol 287:C64–C72

    Article  PubMed  Google Scholar 

  3. Aruga S, Wehrli S, Kaissling B, Moe OW, Preisig PA, Pajor AM, Alpern RJ (2000) Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int 58:206–215

    Article  PubMed  Google Scholar 

  4. Bai L, Pajor AM (1997) Expression cloning of NaDC-2, an intestinal Na+- or Li+-dependent dicarboxylate transporter. Am J Physiol Gastrointest Liver 273:G267–G274

    Google Scholar 

  5. Beck L, Markovich D (2000) The mouse Na+-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275:11880–11890

    Article  PubMed  Google Scholar 

  6. Boehmer C, Embark HM, Bauer A, Palmada M, Yun CH, Weinman EJ, Endou H, Cohen P, Lahme S, Bichler KH, Lang F (2004) Stimulation of renal Na+ dicarboxylate cotransporter 1 by Na+/H+ exchanger regulating factor 2, serum and glucocorticoid inducible kinase isoforms, and protein kinase B. Biochem Biophys Res Commun 313:998–1003

    Article  PubMed  Google Scholar 

  7. Burckhardt BC, Drinkuth B, Menzel C, Konig A, Steffgen J, Wright SH, Burckhardt G (2002) The renal Na+-dependent dicarboxylate transporter, NaDC-3, translocates dimethyl- and disulfhydryl-compounds and contributes to renal heavy metal detoxification. J Am Soc Nephrol 13:2628–2638

    Article  PubMed  Google Scholar 

  8. Burckhardt BC, Lorenz J, Burckhardt G, Steffgen J (2004) Interactions of benzylpenicillin and non-steroidal anti-inflammatory drugs with the sodium-dependent dicarboxylate transporter NaDC-3. Cell Physiol Biochem 14:415–424

    Article  PubMed  Google Scholar 

  9. Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G (2005) Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions. Am J Physiol Renal Fluid Electrolyte Physiol 288:F792–F799

    Article  PubMed  Google Scholar 

  10. Burckhardt BC, Steffgen J, Langheit D, Müller GA, Burckhardt G (2000) Potential-dependent steady-state kinetics of a dicarboxylate transporter cloned from winter flounder kidney. Pflügers Arch 441:323–330

    Article  PubMed  Google Scholar 

  11. Busch AE, Waldegger S, Herzer T, Biber J, Markovich D, Murer H, Lang F (1994) Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+/SO 2−4 transport protein NaSi-1. J Biol Chem 269:12407–12409

    PubMed  Google Scholar 

  12. Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103:1159–1168

    PubMed  Google Scholar 

  13. Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981

    Article  PubMed  Google Scholar 

  14. Dawson PA, Beck L, Markovich D (2003) Hyposulfatemia, growth retardation, reduced fertility, and seizures in mice lacking a functional NaSi-1 gene. Proc Natl Acad Sci USA 100:13704–13709

    Article  PubMed  Google Scholar 

  15. Dawson PA, Pirlo KJ, Steane SE, Nguyen KA, Kunzelmann K, Chien YJ, Markovich D (2005) The rat Na+-sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflügers Arch 450: 262–268

    Article  PubMed  Google Scholar 

  16. Dawson PA, Steane SE, Markovich D (2004) Behavioural abnormalities of the hyposulphataemic Nas1 knock-out mouse. Behav Brain Res 154:457–463

    Article  PubMed  Google Scholar 

  17. Dawson PA, Steane SE, Markovich D (2005) Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behav Brain Res 159:15–20

    Article  PubMed  Google Scholar 

  18. Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100:11122–11126

    Article  PubMed  Google Scholar 

  19. Fei YJ, Inoue K, Ganapathy V (2003) Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278:6136–6144

    Article  PubMed  Google Scholar 

  20. Fei YJ, Liu JC, Inoue K, Zhuang L, Miyake K, Miyauchi S, Ganapathy V (2004) Relevance of NAC-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Biochem J 379:191–198

    Article  PubMed  Google Scholar 

  21. George RL, Huang W, Naggar HA, Smith SB, Ganapathy V (2004) Transport of N-acetylaspartate via murine sodium/dicarboxylate cotransporter NaDC3 and expression of this transporter and aspartoacylase II in ocular tissues in mouse. Biochim Biophys Acta 1690:63–69

    PubMed  Google Scholar 

  22. Girard JP, Baekkevold ES, Feliu J, Brandtzaeg P, Amalric F (1999) Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules. Proc Natl Acad Sci USA 96:12772–12777

    Article  PubMed  Google Scholar 

  23. Griffith DA, Pajor AM (1999) Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Biochemistry 38:7524–7531

    Article  PubMed  Google Scholar 

  24. Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch 447:653–665

    Article  PubMed  Google Scholar 

  25. Hagos Y, Burckhardt BC, Larsen A, Mathys C, Gronow T, Bahn A, Wolff NA, Burckhardt G, Steffgen J (2004) Regulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C. Am J Physiol Renal Fluid Electrolyte Physiol 286:F86–F93

    Article  PubMed  Google Scholar 

  26. Hall JA, Pajor AM (2005) Functional characterization of a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 187: 5189–5194

    Article  PubMed  Google Scholar 

  27. Hamm LL (1990) Renal handling of citrate. Kidney Int 38:728–735

    PubMed  Google Scholar 

  28. Hentschel H, Burckhardt BC, Scholermann B, Kuhne L, Burckhardt G, Steffgen J (2003) Basolateral localization of flounder Na+-dicarboxylate cotransporter (fNaDC-3) in the kidney of Pleuronectes americanus. Pflügers Arch 446:578–584

    Article  PubMed  Google Scholar 

  29. Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–910

    Article  PubMed  Google Scholar 

  30. Inoue K, Fei YJ, Huang W, Zhuang L, Chen Z, Ganapathy V (2002) Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J 367:313–319

    Article  PubMed  Google Scholar 

  31. Inoue K, Fei YJ, Zhuang L, Gopal E, Miyauchi S, Ganapathy V (2004) Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem J 378:949–957

    Article  PubMed  Google Scholar 

  32. Inoue K, Zhuang L, Ganapathy V (2002) Human Na+-coupled citrate transporter: primary structure, genomic organization, and transport function. Biochem Biophys Res Commun 299:465–471

    Article  PubMed  Google Scholar 

  33. Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2002) Structure, function and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem 277:39469–39476

    Article  PubMed  Google Scholar 

  34. Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2003) Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem J 374:21–26

    Article  PubMed  Google Scholar 

  35. Kahn ES, Pajor AM (1999) Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter. Biochemistry 38:6151–6156

    Article  PubMed  Google Scholar 

  36. Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    PubMed  Google Scholar 

  37. Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD, Prasad PD, Ganapathy V (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274:3422–3429

    Article  PubMed  Google Scholar 

  38. Knauf F, Rogina B, Jiang Z, Aronson PS, Helfand SL (2002) Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci USA 99:14315–14319

    Article  PubMed  Google Scholar 

  39. Kushnir MM, Komaromy-Hiller G, Shushan B, Urry FM, Roberts WL (2001) Analysis of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine. Clin Chem 47:1993–2002

    Google Scholar 

  40. Lee A, Beck L, Markovich D (2000) The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization. Genomics 70:354–363

    Article  PubMed  Google Scholar 

  41. Li H, Pajor AM (2003) Serines 260 and 288 are involved in sulfate transport by hNaSi-1. J Biol Chem 278:37204–37212

    Article  PubMed  Google Scholar 

  42. Li H, Pajor AM (2003) Mutagenesis of the N-glycosylation site of hNaSi-1 reduces transport activity. Am J Physiol Cell Physiol 285:C1188–C1196

    PubMed  Google Scholar 

  43. Lotscher M, Custer M, Quabius ES, Kaissling B, Murer H, Biber J (1996) Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflügers Arch 432:373–378

    Article  PubMed  Google Scholar 

  44. Markovich D (2000) Molecular regulation and membrane trafficking of mammalian renal phosphate and sulphate transporters. Eur J Cell Biol 79:531–538

    Article  PubMed  Google Scholar 

  45. Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    PubMed  Google Scholar 

  46. Markovich D, Forgo J, Stange G, Biber J, Murer H (1993) Expression cloning of rat renal Na+/SO 2−4 cotransport. Proc Natl Acad Sci USA 90:8073–8077

    PubMed  Google Scholar 

  47. Markovich D, Murer H (2004) The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflügers Arch 447:594–602

    Article  PubMed  Google Scholar 

  48. Markovich D, Regeer RR, Kunzelmann K, Dawson PA (2005) Functional characterization and genomic organization of the human Na+-sulfate cotransporter hNaS2 gene (SLC13A4). Biochem Biophys Res Commun 326:729–734

    Article  PubMed  Google Scholar 

  49. Nakada T, Zandi Nejad K, Kurita Y, Kudo H, Broumand V, Kwon CY, Mercado A, Mount DB, Hirose S (2005) Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater. Am J Physiol Regul Integr Comp Physiol 289: R575–R585

    PubMed  Google Scholar 

  50. Oshiro N, Pajor AM (2005) Functional characterization of a high affinity Na+/dicarboxylate cotransporter found in Xenopus laevis kidney and heart. Am J Physiol Cell Physiol (in press)

  51. Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270:5779–5785

    PubMed  Google Scholar 

  52. Pajor AM (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol Renal Fluid Electrolyte Physiol 270:F642–F648

    Google Scholar 

  53. Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682

    Article  PubMed  Google Scholar 

  54. Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol 175:1–8

    Article  PubMed  Google Scholar 

  55. Pajor AM (2001) Conformationally-sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate cotransporter. J Biol Chem 276:29961–29968

    Article  PubMed  Google Scholar 

  56. Pajor AM, Gangula R, Yao N (2001) Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol 280:C1215–C1223

    PubMed  Google Scholar 

  57. Pajor AM, Hirayama BA, Loo DDF (1998) Sodium and lithium interactions with the Na+/dicarboxylate cotransporter. J Biol Chem 273:18923–18929

    Article  PubMed  Google Scholar 

  58. Pajor AM, Krajewski SJ, Sun N, Gangula R (1999) Cysteine residues in the Na+/dicarboxylate cotransporter, NaDC-1. Biochem J 344:205–209

    Article  PubMed  Google Scholar 

  59. Pajor AM, Randolph KM (2005) Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate cotransporter. J Biol Chem 280:18728–18735

    Article  PubMed  Google Scholar 

  60. Pajor AM, Sun N (2000) Molecular cloning, chromosomal localization and functional characterization of a sodium/dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Fluid Electrolyte Physiol 279:F482–F490

    PubMed  Google Scholar 

  61. Pajor AM, Sun N (1996) Characterization of the rabbit renal Na+/dicarboxylate cotransporter using anti-fusion protein antibodies. Am J Physiol Cell Physiol 271:C1808–C1816

    Google Scholar 

  62. Pajor AM, Sun N (1996) Functional differences between rabbit and human Na+-dicarboxylate cotransporters, NaDC-1 and hNaDC-1. Am J Physiol Renal Fluid Electrolyte Physiol 271:F1093–F1099

    Google Scholar 

  63. Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    Article  PubMed  Google Scholar 

  64. Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarishi T, Endou H (1998) Cloning, functional characterization and localization of a rat renal Na+-dicarboxylate cotransporter. Am J Physiol Renal Fluid Electrolyte Physiol 275:F298–F305

    Google Scholar 

  65. Steffgen J, Burckhardt BC, Langenberg C, Kuhne L, Müller GA, Burckhardt G, Wolff NA (1999) Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem 274:20190–20196

    Article  Google Scholar 

  66. Wang H, Fei YJ, Kekuda R, Yang Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy ME (2000) Structure, function and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol 278:C1019–C1030

    PubMed  Google Scholar 

  67. Yao X, Pajor AM (2002) Arginine-349 and aspartate-373 of the Na+/dicarboxylate cotransporter are conformationally sensitive residues. Biochemistry 41:1083–1090

    Article  PubMed  Google Scholar 

  68. Yao X, Pajor AM (2000) The transport properties of the human renal Na+/dicarboxylate cotransporter under voltage clamp conditions. Am J Physiol Renal Fluid Electrolyte Physiol 279:F54–F64

    PubMed  Google Scholar 

  69. Zhang FF, Pajor AM (2001) Topology of the Na+/dicarboxylate cotransporter: the N-terminus and hydrophilic loop 4 are located intracellularly. Biochim Biophys Acta 1511:80–89

    PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratory is funded by the National Institutes of Health, grant DK46269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Pajor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajor, A.M. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch - Eur J Physiol 451, 597–605 (2006). https://doi.org/10.1007/s00424-005-1487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1487-2

Keywords

Navigation