Skip to main content
Log in

Identification of Kinome Representatives with Neuroprotective Activity

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—Regulation of adaptive mechanisms in the central nervous system in cerebrovascular disorders and during the development of pathological processes is an urgent problems in neurobiology and medicine. Kinases, enzymes that perform a wide range of functions in the central nervous system, are of great interest as molecular targets and possible therapeutic agents in various neurodegenerative processes and impaired energy metabolism in the nervous tissue. The vast majority of intracellular reactions that lead to activation of neuroprotective mechanisms or, conversely, cell death reactions are associated with kinase activity. Nevertheless, the functioning of kinases in pathological processes in the central nervous system is poorly understood. Here, we identified components of the neuronal kinome with previously undescribed neuroprotective properties. We evaluated cell viability and characterized the morphology of primary brain cell cultures after treatment with 34 kinase inhibitors under conditions of modeled stress (glucose deprivation). We identified several groups of neuronal kinome with different actions and characterized the most physiologically relevant kinases. It was shown that blockage of eEF2K, SRC, and IKKb (IKK2) kinases, and the structurally close associated group of kinases JAK2, CDK2/CyclinA, CDK2/CyclinE, and FLT3 maintain cell viability in primary neuronal cultures during glucose deprivation in vitro. For the several most functionally important kinases, we estimated their influence on functional calcium activity of primary neuronal cultures. The data revealed that blockage of IKKb and eEF2K kinases effectively preserves the viability of neuronal cells under glucose deprivation but does not maintain the functional calcium activity of neuron-glial networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Cortelli, P., Perani, D., Montagna, P., Gallassi, R., Tinuper, P., Provini, F., Avoni, P., Ferrillo, F., Anchisi, D., Moresco, R.M., Fazio, F., Parchi, P., Baruzzi, A., Lugaresi, E., and Gambetti, P., Brain, 2006, vol. 129, pp. 668–675.

    Article  Google Scholar 

  2. Goffin, K., Dedeurwaerdere, S., Van Laere, K., and Van Paesschen, W., Semin. Nucl. Med, 2008, vol. 38, pp. 227–239.

    Article  Google Scholar 

  3. Pan, J.W., Rothman, T.L., Behar, K.L., Stein, D.T., and Hetherington, H.P., J. Cereb. Blood. Flow. Metab., 2000, vol. 20, pp. 1502–1507.

    Article  CAS  Google Scholar 

  4. Otáhal, J., Folbergrová, J., Kovacs, R., Kunz, W.S., and Maggio, N., Int. Rev. Neurobiol., 2014, vol. 114, pp. 209–243.

    Article  Google Scholar 

  5. Pan, J.W., Williamson, A., Cavus, I., Hetherington, H.P., Zaveri, H., Petroff, O.A., and Spencer, D.D., Epilepsia, 2008, vol. 49, pp. 31–41.

    Article  CAS  Google Scholar 

  6. Radak, D., Katsiki, N., Resanovic, I., Jovanovic, A., Sudar-Milovanovic, E., Zafirovic, S., Mousad, S.A., and Isenovic, E.R., Curr. Vasc. Pharmacol., 2017, vol. 15, pp. 115–122.

    Article  CAS  Google Scholar 

  7. Small, J.E., Butler, P.M., Zabar, Y., and Barash, J.A., Neurocase, 2016, vol. 22, pp. 411–415.

    Article  Google Scholar 

  8. Lanzino, G., Burrows, A.M., and Tymianski, M., Stroke, 2013, vol. 44, pp. 316–317.

    Article  Google Scholar 

  9. Jayachandran, N., Mejia, E.M., Sheikholeslami, K., Sher, A.A., Hou, S., Hatch, G.M., and Marshall, A.J., J. Immunol., 2018, vol. 201, pp. 406–416.

    Article  CAS  Google Scholar 

  10. Wang, S., Xue, H., Xu, Y., Niu, J., and Zhao, P., Neurochem. Res., 2019, vol. 44, pp. 347–356.

    Article  CAS  Google Scholar 

  11. Shibata, S., Furuta, K., Oh-Hashi, K., Ueda, H., Kiuchi, K., and Hirata, Y., Toxicology, 2017, vol. 390, pp. 83–87.

    Article  CAS  Google Scholar 

  12. Khani-Habibabadi, F., Askari, S., Zahiri, J., Javan, M., and Behmanesh, M., Comput. Biol. Chem., 2019, vol. 83. P. 107153.

  13. Vedunova, M., Sakharnova, T., Mitroshina, E., Perminova, M., Pimashkin, A., Zakharov, Y., Dityatev, A., and Mukhina, I., Frontiers in Cellular Neuroscience, 2013, vol. 7, p. 149.

    Article  Google Scholar 

  14. Zakharov, Y.N., Mitroshina, E.V., Shirokova, O., and Mukhina, I.V., Springer Proc. Math. Stat. Model. Algorithms Technol. Netw. Anal, 2013, vol. 32, pp. 225–232.

    Article  Google Scholar 

  15. Mitroshina, E.V., Mishchenko, T.A., Shishkina, T.V., and Vedunova, M.V., Kletochnye Tekhnologii v Biologii i Meditsine, 2019, vol. 2, pp. 121–127.

  16. Uehara, S., Fukuzawa, Y., Matuyama, T., and Gotoh, K., Journal of Cancer Therapy, 2017, vol. 8, pp. 112–130.

    Article  CAS  Google Scholar 

  17. Li, X., Wang, M.H., Qin, C., Fan, W.H., Tian, D.S., and Liu, J.L., PLoS One, 2017, vol. 12.

  18. Dong, R.F., Tai, L.W., Zhang, B., Shi, F.K., Liu, H.M., Duan, P.C., and Cheng, Y., Gene, 2019, vol. 697, pp. 152–158.

    Article  CAS  Google Scholar 

  19. Kameshima, S., Okada, M., and Yamawaki, H., Apoptosis, 2019, vol. 24, pp. 359–368.

    Article  CAS  Google Scholar 

  20. Jan, A., Jansonius, B., Delaidelli, A., Somasekharan, S.P., Bhanshali, F., Vandal, M., Negri, G.L., Moerman, D., Mackenzie, I., Calon, F., Hayden, M.R., Taubert, S., and Sorensen, P.H., Acta Neuropathol., 2017, vol. 133, pp. 101–119.

    Article  CAS  Google Scholar 

  21. Dantsuji, M., Nakamura, S., Nakayama, K., Mochizuki, A., Park, S.K., Bae, Y.C., Ozeki, M., and Inoue, T, J. Physiol., 2019, vol. 597, pp. 2565–2589.

    Article  CAS  Google Scholar 

  22. Ward, K.R., Featherstone, R.E., Naschek, M.J., Melnychenko, O., Banerjee, A., Yi, J., Gifford, R.L., Borgmann-Winter, K.E., Salter, M.W., Hahn, C.G., and Siegel, S.J., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, vol. 93, pp. 84–92.

    Article  CAS  Google Scholar 

  23. Jakel, H., Peschel, I., Kunze, C., Weinl, C., and Hengst, L., Cell Cycle, 2012, vol. 11, pp. 1910–1917.

    Article  Google Scholar 

  24. Jakel, H., Weinl, C., and Hengst, L., Oncogene, 2011, vol. 30, pp. 3502–3512.

    Article  CAS  Google Scholar 

  25. Hou, Y., Wang, K., Wan, W., Cheng, Y., Pu, X., and Ye, X., Genes Dis., 2018, vol. 5, pp. 245–255.

    Article  CAS  Google Scholar 

  26. Wang, X.L., Qiao, C.M., Liu, J.O., and Li, C.Y., Physiol. Biochem., 2017, vol. 44, pp. 85–98.

    Google Scholar 

  27. Dong, R.F., Tai, L.W., Zhang, B., Shi, F.K., Liu, H.M., Duan, P.C., and Cheng, Y., Gene, 2019, vol. 697, pp. 152–158.

    Article  CAS  Google Scholar 

  28. Huxford, T. and Ghosh, G., Adv. Exp. Med. Biol., 2019, vol. 1172, pp. 207–226.

    Article  Google Scholar 

  29. Heise, C., Gardoni, F., Culotta, L., di Luca, M., Verpelli, C., and Sala, C., Front Cell Neurosci., 2014, vol. 8, p. 35.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed in the Center for Common Use of Research Equipment for Molecular Biological Studies of Nizhny Novgorod State University.

Funding

The study was supported by the Russian Science Foundation, project no. 18-75-10071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mitroshina.

Ethics declarations

Conflict of interest. The authors declare no conflicts of interest.

Ethical approval. The study was performed in accordance with the requirements of Order No. 267 of The Ministry of Health of the Russian Federation from June 19, 2003, as well as in accordance with the international rules “Guide for the Care and Use of Laboratory Animals,” the requirements of the European Convention on the protection of vertebrates used for experimental and other scientific purposes (Strasbourg, 2006), and was approved by the bioethics committee of Lobachevsky University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitroshina, E.V., Mishchenko, T.A., Loginova, M.M. et al. Identification of Kinome Representatives with Neuroprotective Activity. Neurochem. J. 14, 394–407 (2020). https://doi.org/10.1134/S1819712420040133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420040133

Keywords:

Navigation