Skip to main content

Advertisement

Log in

Sevoflurane Postconditioning Inhibits Autophagy Through Activation of the Extracellular Signal-Regulated Kinase Cascade, Alleviating Hypoxic-Ischemic Brain Injury in Neonatal Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hypoxic-ischemic brain injury (HIBI) in neonates is one of the major contributors of newborn death and cognitive impairment. Numerous animal studies have demonstrated that autophagy is substantially increased in HIBI and that sevoflurane postconditioning (SPC) can attenuate HIBI. However, if SPC-induced neuroprotection inhibits autophagy in HIBI remains unknown. To investigate if cerebral protection induced by SPC is related to decreased autophagy in the setting of HIBI. Postnatal rats at day 7 (P7) were randomly assigned to 7 different groups: Sham, HIBI, SPC–HIBI, HIBI + rapamycin, SPC–HIBI + rapamycin, HIBI + p-extracellular signal-regulated kinase (p-ERK) inhibitor, and SPC–HIBI + p-ERK inhibitor. To induce HIBI, neonatal rats underwent left common carotid artery ligation, followed by 2 h of hypoxia (8% O2). Rats in the SPC groups were treated with 1 minimum alveolar concentration ([MAC], 2.4%) SPC for 30 min after HIBI induction. Markers of autophagy and expression of ERK cascade components were measured in the rat brains after 24 h. Spatial learning and memory function were examined 29–34 days after administration of an autophagy agonist or a p-ERK inhibitor. The expression of microtubule-associated proteins 1A/1B, light chain 3B II (LC3-II) and tuberous sclerosis complex 2 (TSC2) were decreased in the SPC–HIBI group compared to the HIBI group. Expression of the p62 sequestosome 1 (P62/SQSTM1) protein, p-ERK/ERK, phospho-mammalian target of rapamycin (p-mTOR) and phospho-p70S6 were increased in SPC–HIBI group. Rats within the SPC–HIBI groups that also received the p-ERK inhibitor or autophagy inhibitor demonstrated reduced cross platform times and increased escape latency. Approximately 30 min of 2.4% SPC treatment in the P7 rat HIBI model attenuated excessive autophagy in the brain by elevating the ERK cascade. This finding provides additional insight into HIBI and identifies new targets for therapeutic approaches to treat HIBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HIBI:

Hypoxic-ischemic brain injury

SPC:

Sevoflurane postconditioning

ERK:

Extracellular signal-regulated kinase

ERKI:

ERK inhibitor

References

  1. Edwards A, Brocklehurst P, Gunn A, Halliday H, Juszczak E, Levene M, Strohm B, Thoresen M, Whitelaw A, Azzopardi D (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340:c363

    Article  PubMed  PubMed Central  Google Scholar 

  2. Descloux C, Ginet V, Clarke PG, Puyal J, Truttmann AC (2015) Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci 45:75–85. https://doi.org/10.1016/j.ijdevneu.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  3. Okereafor A, Allsop J, Counsell SJ, Fitzpatrick J, Azzopardi D, Rutherford MA, Cowan FM (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121(5):906–914. https://doi.org/10.1542/peds.2007-0770

    Article  PubMed  Google Scholar 

  4. Vannucci SJ, Hagberg H (2004) Hypoxia-ischemia in the immature brain. J Exp Biol 207(Pt 18):3149–3154. https://doi.org/10.1242/jeb.01064

    Article  CAS  PubMed  Google Scholar 

  5. Stankowski JN, Gupta R (2011) Therapeutic targets for neuroprotection in acute ischemic stroke: lost in translation? Antioxid Redox Signal 14(10):1841–1851. https://doi.org/10.1089/ars.2010.3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14(4):469–477. https://doi.org/10.1007/s10495-008-0304-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cotten CM, Murtha AP, Goldberg RN, Grotegut CA, Smith PB, Goldstein RF, Fisher KA, Gustafson KE, Waters-Pick B, Swamy GK, Rattray B, Tan S, Kurtzberg J (2014) Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr 164(5):973–979 e971. https://doi.org/10.1016/j.jpeds.2013.11.036

    Article  PubMed  Google Scholar 

  8. Puyal J, Ginet V, Clarke PG (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 105:24–48. https://doi.org/10.1016/j.pneurobio.2013.03.002

    Article  PubMed  Google Scholar 

  9. Kim H, Kim E, Bae J, Lee K, Jeon Y, Hwang J, Lim Y, Min S, Park H (2017) Sevoflurane postconditioning reduces apoptosis by activating the JAK-STAT pathway after transient global cerebral ischemia in rats. J Neurosurg Anesthesiol 29(1):37–45

    Article  PubMed  Google Scholar 

  10. Wang H, Shi H, Yu Q, Chen J, Zhang F, Gao Y (2016) Sevoflurane preconditioning confers neuroprotection via anti-apoptosis effects. Acta Neurochir Suppl 121:55–61. https://doi.org/10.1007/978-3-319-18497-5_10

    Article  PubMed  Google Scholar 

  11. Hwang J, Jeon Y, Lim Y, Park H (2017) Sevoflurane postconditioning-induced anti-inflammation via inhibition of the toll-like receptor-4/nuclear factor Kappa B pathway contributes to neuroprotection against transient global cerebral ischemia in rats. Int J Mol Sci 18(11):2347

    Article  CAS  Google Scholar 

  12. Xu Y, Tian Y, Tian Y, Li X, Zhao P (2016) Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 139(5):795–805. https://doi.org/10.1111/jnc.13851

    Article  CAS  PubMed  Google Scholar 

  13. Shang L, Chen S, Du F, Li S, Zhao L, Wang X (2011) Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci USA 108(12):4788–4793. https://doi.org/10.1073/pnas.1100844108

    Article  PubMed  Google Scholar 

  14. von Kriegsheim A, Baiocchi D, Birtwistle M, Sumpton D, Bienvenut W, Morrice N, Yamada K, Lamond A, Kalna G, Orton R, Gilbert D, Kolch W (2009) Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol 11(12):1458–1464. https://doi.org/10.1038/ncb1994

    Article  CAS  Google Scholar 

  15. Yuan JH, Pan F, Chen J, Chen CE, Xie DP, Jiang XZ, Guo SJ, Zhou J (2017) Neuroprotection by plumbagin involves BDNF-TrkB-PI3K/Akt and ERK1/2/JNK pathways in isoflurane-induced neonatal rats. J Pharm Pharmacol 69(7):896–906. https://doi.org/10.1111/jphp.12681

    Article  CAS  PubMed  Google Scholar 

  16. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23(3):876–882

    Article  CAS  PubMed  Google Scholar 

  17. Zhao P, Peng L, Li L, Xu X, Zuo Z (2007) Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology 107(6):963–970. https://doi.org/10.1097/01.anes.0000291447.21046.4d

    Article  CAS  PubMed  Google Scholar 

  18. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1):258–277. https://doi.org/10.1093/brain/awq341

    Article  PubMed  Google Scholar 

  19. Hu X, Wang J, Zhang Q, Duan X, Chen Z, Zhang Y (2016) Postconditioning with sevoflurane ameliorates spatial learning and memory deficit after hemorrhage shock and resuscitation in rats. J Surg Res 206(2):307–315

    Article  CAS  PubMed  Google Scholar 

  20. Lai Z, Zhang L, Su J, Cai D, Xu Q (2016) Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res 1630:25–37

    Article  CAS  PubMed  Google Scholar 

  21. Lawn J, Bahl R, Bergstrom S, Bhutta Z, Darmstadt G, Ellis M, English M, Kurinczuk J, Lee A, Merialdi M, Mohamed M, Osrin D, Pattinson R, Paul V, Ramji S, Saugstad O, Sibley L, Singhal N, Wall S, Woods D, Wyatt J, Chan K, Rudan I (2011) Setting research priorities to reduce almost one million deaths from birth asphyxia by 2015. PLoS Med 8(1):e1000389

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fineschi V, Viola RV, La Russa R, Santurro A, Frati P (2017) A controversial medicolegal issue: timing the onset of perinatal hypoxic-ischemic brain injury. Mediators Inflamm 2017:6024959. https://doi.org/10.1155/2017/6024959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Ye Z, Huang G, Wang N, Wang E, Guo Q (2016) Sevoflurane post-conditioning enhanced hippocampal neuron resistance to global cerebral ischemia induced by cardiac arrest in rats through PI3K/Akt survival pathway. Front Cell Neurosci 10:271. https://doi.org/10.3389/fncel.2016.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ginet V, Puyal J, Clarke PG, Truttmann AC (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 175(5):1962–1974. https://doi.org/10.2353/ajpath.2009.090463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piras A, Gianetto D, Conte D, Bosone A, Vercelli A (2011) Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PLoS ONE 6(7):e22514. https://doi.org/10.1371/journal.pone.0022514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ginet V, Spiehlmann A, Rummel C, Rudinskiy N, Grishchuk Y, Luthi-Carter R, Clarke PG, Truttmann AC, Puyal J (2014) Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy 10(5):846–860. https://doi.org/10.4161/auto.28264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22(3):367–376

    Article  CAS  PubMed  Google Scholar 

  28. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG (2012) Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist 18(3):224–236. https://doi.org/10.1177/1073858411404948

    Article  CAS  PubMed  Google Scholar 

  29. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H, Blomgren K (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 12(2):162–176. https://doi.org/10.1038/sj.cdd.4401545

    Article  CAS  PubMed  Google Scholar 

  30. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169(2):566–583. https://doi.org/10.2353/ajpath.2006.051066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4(6):762–769

    Article  CAS  PubMed  Google Scholar 

  32. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172(2):454–469. https://doi.org/10.2353/ajpath.2008.070876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Puyal J, Clarke P (2009) Targeting autophagy to prevent neonatal stroke damage. Autophagy 5(7):1060–1061

    Article  Google Scholar 

  34. Puyal J, Vaslin A, Mottier V, Clarke P (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 66(3):378–389

    Article  CAS  PubMed  Google Scholar 

  35. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792–1802. https://doi.org/10.1038/emboj.2010.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  Google Scholar 

  37. Kovács V, Tóth-Szűki V, Németh J, Varga V, Remzső G, Domoki F (2018) Active forms of Akt and ERK are dominant in the cerebral cortex of newborn pigs that are unaffected by asphyxia. Life Sci 192:1–8

    Article  CAS  PubMed  Google Scholar 

  38. Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7(6):643–644

    Article  CAS  PubMed  Google Scholar 

  39. Kim SY, Cheon SY, Kim EJ, Lee JH, Kam EH, Kim JM, Park M, Koo BN (2017) Isoflurane postconditioning inhibits tPA-induced matrix metalloproteinases activation after hypoxic injury via low-density lipoprotein receptor-related protein and extracellular signal-regulated kinase pathway. Neurochem Res 42(5):1533–1542. https://doi.org/10.1007/s11064-017-2211-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by two grants from the National Natural Science Foundation of China (Nos. 81171782, 81671311), one grant from Science and Technology foundation of Liaoning province (No. 2015020467), one grant from the Outstanding Scientific Fund of Shengjing Hospital (No. 201708).

Author information

Authors and Affiliations

Authors

Contributions

SW and PZ designed the experiments. SW, HX and PZ contributed to the planning of the work. SW performed all the experiments with the help of HX, YX and JN. HX, YX and JN participated in the data collection. SW, YX and JN analyzed and interpreted the results. SW wrote the manuscript with the help of YX. PZ supervised the project and revised the article.

Corresponding author

Correspondence to Ping Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animal experiments were carried out in accordance with the National Institute of Health Guideline for the Care and Use of Laboratory Animals. Formal approval to conduct the experiments described has been obtained from the animal review board of Shengjing Hospital, China Medical University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xue, H., Xu, Y. et al. Sevoflurane Postconditioning Inhibits Autophagy Through Activation of the Extracellular Signal-Regulated Kinase Cascade, Alleviating Hypoxic-Ischemic Brain Injury in Neonatal Rats. Neurochem Res 44, 347–356 (2019). https://doi.org/10.1007/s11064-018-2682-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2682-9

Keywords

Navigation