Skip to main content
Log in

Morphological Transformations in the Process of Coagulation of Cellulose Solution in N-Methylmorpholine N-Oxide with Isobutanol

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Evolution of the morphology of cellulose solutions in N-methylmorpholine-N-oxide during coagulation with a “soft” coagulant, isobutyl alcohol, at different temperatures is considered. Using optical interferometry and transmitted and scanning electron microscopy the mechanism of phase separation of the system to form a polymer phase is studied depending on the temperature of alcohol. It is shown that, in the case of a room temperature coagulant, a heterogeneous film with a droplet texture enlarging over thickness appears along the precipitation front. At a high temperature of alcohol the coagulation of the solution occurs in two stages. At the first stage the penetration of the coagulant into the jet of spinning solution leading to the formation of vacuoles occurs. The phase separation of the solution proceeds within the vacuoles as microreactors to form a polymer-concentrated shell and a polymer-diluted phase in the vacuole cavity. At the second stage the coagulant diffuses through the vacuole shell into the bulk of the solution and causes its uniform coagulation. The process of vacuole formation is visualized. The transverse cleavage of the film is analyzed by energy dispersive X-ray spectroscopy. The difference in the content of C, N, and O atoms on the walls of vacuoles and in the region of a film with a uniform cellular morphology is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. L. S. Gal’braikh, Sorosovsk. Obrazovat. Zh., No. 11, 47 (1996).

  2. Z. A. Rogovin and L. S. Gal’braikh, Chemical Transformations and Modification of Cellulose (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  3. A. M. Bochek, Russ. J. Appl. Chem 76, 1711 (2003).

    Article  CAS  Google Scholar 

  4. M. Gericke, K. Schlufter, T. Liebert, T. Heinze, and T. Budtova, Biomacromolecules 10, 1188 (2009).

    Article  CAS  Google Scholar 

  5. T. Budtova and P. Navard, Nord. Pulp Pap. Res. J. 30, 99 (2015).

    Article  CAS  Google Scholar 

  6. T. Budtova and P. Navard, Cellulose 23, 5 (2016).

    Article  CAS  Google Scholar 

  7. R. Yudianti, A. Syampurwadi, H. Onggo, M. Karina, H. Uyama, and J. Azuma, Polym. Adv. Technol. 27, 1102 (2016).

    Article  CAS  Google Scholar 

  8. X. Lu and X. Shen, Carbohydr. Polym. 86 (1), 239 (2011).

    Article  CAS  Google Scholar 

  9. M. M. Pavlyuchenko, F. N. Kaputskii, and D. D. Grinshpan, Zh. Prikl. Khim. 48, 1822 (1975).

    CAS  Google Scholar 

  10. R. B. Hammer and A. F. Turbak, “Production of Rayon from Solutions of Cellulose in N2O4–DMF,” in Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives (Am. Chem. Soc., Washington, 1977), Chap. 4.

  11. D. D. Grinshpan, A. N. Gonchar, N. G. Tsygankova, S. E. Makarevich, T. A. Savitskaya, and E. V. Sheimo, J. Eng. Phys. Thermophys. 84, 594 (2011).

    Article  CAS  Google Scholar 

  12. H. Boerstoel, H. Maatman, J. B. Westerink, and B. M. Koenders, Polymer 42, 7371 (2001).

    Article  CAS  Google Scholar 

  13. D. L. Johnson, US Patent No. 3447939 (1966).

  14. L. K. Golova, O. E. Borodina, L. K. Kuznetsova, T. A. Lyubova, and T. B. Krylova, Fibre Chem. 32, 243 (2000).

    CAS  Google Scholar 

  15. K. C. Schuster, C. Rohrer, D. Eichinger, J. Schmidtbauer, P. Aldred, and H. Firgo, in Natural Fibers, Plastics and Composites, Ed. by F. T. Wallenberger and N. E. Weston (Springer, Boston, 2004).

    Google Scholar 

  16. L. K. Golova, Fibre Chem. 28, 5 (1996).

    Article  Google Scholar 

  17. T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, Prog. Polym. Sci. 26, 1763 (2001).

    Article  CAS  Google Scholar 

  18. V. Kulichikhin, I. Makarov, M. Mironova, L. Golova, M. Vinogradov, G. Shandryuk, I. Levin, and N. Arkharova, Materials 13, 3495 (2020).

    Article  CAS  Google Scholar 

  19. O. Biganska and P. Navard, Cellulose 16, 179 (2009).

    Article  CAS  Google Scholar 

  20. J. Schurz, Lenzinger Ber. 74 (9), 37 (1994).

    CAS  Google Scholar 

  21. P. Weigel, J. Gensrich, and H.-P. Fink, Lenzinger Ber. 74 (9), 31 (1994).

    CAS  Google Scholar 

  22. L. K. Golova, Russ. J. Gen. Chem. 46, 49 (2002).

    CAS  Google Scholar 

  23. M. Abu-Rous, E. Ingolic, and K. C. Schuster, Cellulose 13, 411 (2006).

    Article  CAS  Google Scholar 

  24. M. Abu-Rous, E. Ingolic, and K. C. Schuster, Lenzinger Ber. 85, 31 (2006).

    CAS  Google Scholar 

  25. M. Abu-Rous, K. Varga, T. Bechtold, and K. C. Schuster, J. Appl. Polym. Sci. 106, 2083 (2007).

    Article  CAS  Google Scholar 

  26. J. C. Zhang, M. W. Shi, H. Zhu, and K. Lai, Chem. Fibers Int. 49, 494 (1999).

    CAS  Google Scholar 

  27. I. S. Makarov, L. K. Golova, M. I. Vinogradov, L. S. Levin, T. I. Gromovykh, N. A. Arkharova, and V. G. Kulichikhin, Fibre Chem. 51, 175 (2019).

    Article  CAS  Google Scholar 

  28. I. S. Makarov, L. K. Golova, M. I. Vinogradov, M. V. Mironova, I. S. Levin, G. N. Bondarenko, G. A. Shandryuk, N. A. Arkharova, and V. G. Kulichikhin, Polym. Sci., Ser. A 61, 598 (2019).

    Article  CAS  Google Scholar 

  29. J. Crawshaw and R. E. Cameron, Polymer 41, 4691 (2000).

    Article  CAS  Google Scholar 

  30. V. V. Romanov, A. N. Sokira, O. B. Lunina, and M. M. Iovleva, Fibre Chem. 20, 38 (1988).

    Article  Google Scholar 

  31. V. V. Romanov, N. P. Kruchinin, O. B. Lunina, N. P. Trifonova, and V. G. Kulichikhin, Fibre Chem. 17, 417 (1986).

    Article  Google Scholar 

  32. S. I. Banduryan, M. M. Iovleva, Y. Y. Belousov, and N. A. Ivanova, Fibre Chem. 16, 323 (1985).

    Article  Google Scholar 

  33. A. J. Uddin, A. Yamamoto, Y. Gotoh, M. Nagura, and M. Iwata, Text. Res. J. 80, 1846 (2010).

    Article  CAS  Google Scholar 

  34. H. P. Fink, P. Weigel, and H. J. Purz, Lenzinger Ber. 78, 41 (1998).

    CAS  Google Scholar 

  35. L. K. Golova, RF Patent No. 1645308 (1991).

  36. A. E. Chalykh, Polym. Sci., Ser. C 43, 195 (2001).

    Google Scholar 

  37. G. B. Vasilyev, M. V. Mironova, E. G. Litvinova, V. V. Volkov, V. S. Khotimskii, and V. G. Kulichikhin, Polym. Sci., Ser. A 55, 510 (2013).

    Article  CAS  Google Scholar 

  38. A. E. Chalykh, V. K. Gerasimov, and Yu. M. Mikhailov, Diagrams of Phase State of Polymer Systems (Yanus-K, Moscow, 1998) [in Russian].

    Google Scholar 

  39. A. S. Orekhov, V. V. Klechkovskaya, and S. V. Kononova, Crystallogr. Rep. 62, 710 (2017).

    Article  CAS  Google Scholar 

  40. A. S. Orekhov, N. A. Arkharova, S. V. Kononova, and V. V. Klechkovskaya, Crystallogr. Rep. 63, 745 (2018).

    Article  CAS  Google Scholar 

  41. V. A. Platonov and V. V. Smolikov, in Physical and Chemical Foundations of Production of Cellulose Hydrate Fibers by Nontraditional Methods, Ed. by S. P. Papkov and I. P. Baksheeva (VNIIVproekt, Mytishchi, 1989), p. 166 [in Russian].

  42. O. Biganska, PhD Thesis (Ecole Nationale des Mines de Paris, Paris, 2002).

  43. I. Y. Skvortsov, V. G. Kulichikhin, I. I. Ponomarev, L. A. Varfolomeeva, M. S. Kuzin, K. M. Skupov, Y. A. Volkova, D. Y. Razorenov, and O. A. Serenko, Polymers 12, 2454 (2020).

    Article  CAS  Google Scholar 

  44. L. Tan, D. Pan, and N. Pan, J. Appl. Polym. Sci. 110, 3439 (2008).

    Article  CAS  Google Scholar 

  45. V. G. Kulichikhin, I. Y. Skvortsov, M. I. Mironova, A. N. Ozerin, T. S. Kurkin, A. K. Berkovich, E. I. Frenkin, and A. Y. Malkin, Adv. Polym. Technol 37, 1099 (2018).

    Article  CAS  Google Scholar 

  46. Y. Termonia, J. Polym. Sci., Part B: Polym. Phys. 33, 279 (1995).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 17-79-30108) and the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Assignment using the equipment of the Shared Research Center of the Crystallography and Photonics Federal Research Center, Russian Academy of Sciences (project RFMEFI62119X0035) in terms of electron microscopic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kulichikhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.S., Golova, L.K., Vinogradov, M.I. et al. Morphological Transformations in the Process of Coagulation of Cellulose Solution in N-Methylmorpholine N-Oxide with Isobutanol. Polym. Sci. Ser. C 63, 161–169 (2021). https://doi.org/10.1134/S181123822102003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181123822102003X

Navigation