Skip to main content
Log in

Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Applying transmission electron microscopy (TEM) on ultra-thin cross-sections of fibres, the main characteristics of the internal morphology of cotton and the main man-made cellulosic fibres (modal, viscose and lyocell) could be visualised. To obtain an appropriate contrast for TEM, isoprene was polymerised into the swollen fibres after a stepwise solvent exchange from water to acetone. The included polymer is stainable with osmium tetraoxide. Significant differences in distribution of pore sizes and pore arrangements in the cellulosic fibres were seen. Cotton showed very small pores in the bulk of the fibre, but drying cracks and flat pores between the sheets of the secondary wall appear as larger pores. Lyocell contains only nanopores in the bulk of the fibre with a slight gradient in pore density, and a very porous skin layer. In viscose and modal, a very wide pore size distribution from nanometer to micrometer size can be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biganska O. 2002. Etude physico-chimique des solutions de cellulose dans la N-Methylmorpholine-N-Oxyde. Ph.D Thesis, Ecole Nationale des Mines de Paris, France

  • Bredereck K., Bühler A. (1992) Porenstrukturbestimmung von Cellulosefasern durch Ausschlußchromatographie. Grundlagen und Anwendungsbeispiele, für Quellbehandlungen und Hochveredlung von Baumwollgewebe. Melliand Textilberichte 73: 652–662

    Google Scholar 

  • Bredereck K., Hermanutz F. (2005) Man-made cellulosics. Rev. Prog. Color 35: 59–75

    CAS  Google Scholar 

  • Coulsey H.A., Smith S.B. (1995) The formation and structure of a new cellulosic fibre. Lenzinger Berichte 75: 51–61

    CAS  Google Scholar 

  • Crawshaw J., Cameron R.E. (2000) A small angle X-ray scattering study of the pore structure in TENCEL® cellulose fibres and effects on physical treatments. Polymer 41: 4691

    Article  CAS  Google Scholar 

  • Crawshaw J., Vickers M.E., Briggs N.P., Heenan R.K., Cameron R.E. (2000) The hydration of TENCEL® cellulose fibres studied using contrast variation in small angle neutron scattering. Polymer 41: 1873–1881

    Article  CAS  Google Scholar 

  • Ducos F., Schuster K.C., Biganska O. and Navard P., manuscript in preparation

  • Eichinger D., Lotz C. (1996) Lenzing lyocell – potential for technical textiles. Lenzinger Berichte 75: 69–72

    Google Scholar 

  • Fink H.P., Ganster J. 1994. Relations between structure and mechanical properties of cellulosic man-made fibres, Viscose Chemistry seminar proceedings, Stockholm, Sweden

  • Fink H.P., Weigel P., Ganster J., Rihm R., Puls J., Sixta H., Parajo J.C. (2004) Evaluation of new organosolv dissolving pulps. Part II: Structure and NMMO processability of pulps. Cellulose 11: 85–98

    Article  CAS  Google Scholar 

  • Hagege R., Kassenbeck P., Meimoun D., Parisot A. (1969) Electron microscopy of cellulosic structures by inclusion of stainable unsaturated polymers. Textile Res. J. 39: 1015–1022

    CAS  Google Scholar 

  • Hearle J.W.S. (1958) Fringed-fibril theory of structure in crystalline polymers. J. Polymer Science 28: 432–435

    Article  CAS  Google Scholar 

  • Kongdee A., Bechtold T., Burtscher E., Scheinecker M. (2004) The influence of wet/dry treatment on pore structure – The correlation of pore parameters, water retention and moisture regain values. Carbohydr. Polym. 57: 39–44

    Article  CAS  Google Scholar 

  • Krässig H., Schrott E. (1945) Der Einfluss der Inclusion auf die Reaktivität unvernetzter und vernetzter Zellwolle. Makromol. Chem. 13: 179 – 193

    Article  Google Scholar 

  • Lenz J., Schurz J., Wrentschur E. (1993) Properties and structure of solvent-spun and viscose-type fibres in the swollen state. Colloid Polym. Sci. 271: 460–468

    Article  CAS  Google Scholar 

  • Mortimer S.A. 1995. Etude de la structure des fibres lyocell. Université Joseph Fourier – Grenoble I, Ph.D Thesis, France

  • Moss C.E., Butler M.F., Müller M., Cameron R.E. (2002) Microfocus small-angle X-ray scattering investigation of the skin-core microstructure of lyocell cellulose fibers. J. Appl. Polym. Sci. 83: 2799–2816

    Article  CAS  Google Scholar 

  • Purz H.J., Graf H., Fink H.P. (1995) Elektronenmikroskopische Untersuchungen zur Fibrillar- und Fällungsstruktur der Cellulose. Das Papier 12: 714 – 730

    Google Scholar 

  • Reynolds E.S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17: 208–212

    Article  PubMed  CAS  Google Scholar 

  • Schurz J. (1994) What is new about new fibres of the lyocell type. Lenzinger Berichte 9/94: 37–40

    Google Scholar 

  • Schuster K.C., Rohrer C., Eichinger D., Schmidtbauer J., Aldred P., Firgo H. (2003a) Environmentally friendly lyocell fibres. In: Wallenberger F.T., Weston N.E. (eds) Natural Fibres, Plastics and Composites. Kluwer Academic Publishers, Boston/Dordrecht/N.Y/London, pp. 123–146

    Google Scholar 

  • Schuster K.C., Aldred P., Villa M., Baron M., Loidl R., Biganska O., Patlazhan S., Navarad P., Rüf H., Jericha E. (2003b) Characterising the emerging lyocell fibres structure by ultra small angle neutron scattering (USANS). Lenzinger Berichte 82: 107–117

    Google Scholar 

  • Süvern K. (1921) Die Künstliche Seide. Springer-Berlin, Berlin, pp. 644

    Google Scholar 

  • Zhang J., Zhu H., Shi K., Lai K. (1999) Study of the skin-core structure of lyocell staple fibres. Chem. Fibres Int. 49: 497–500

    Google Scholar 

Download references

Acknowledgments

Thanks to Dr. S. Knaus, Vienna University of Technology, for facilitating the isoprene treatment of fibres for TEM preparation. Prof. T. Bechtold’s support as the head of the Christian Doppler Laboratory of Textile and Fibre Chemistry in Cellulosics, Dornbirn, Austria, is acknowledged. This work was in part financially supported by the Christian Doppler Research Society, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Christian Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rous, M.A., Ingolic, E. & Schuster, K.C. Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13, 411–419 (2006). https://doi.org/10.1007/s10570-006-9052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-006-9052-5

Keywords

Navigation