Skip to main content
Log in

Processing of cellulose via highly concentrated “solid solutions”

  • New Methods of Fabrication of Cellulose Fibres
  • Published:
Fibre Chemistry Aims and scope

Abstract

The examined method of processing cellulose can be used to conduct solid-phase EDA-complexation of cellulose with high-melting MMO hydrates in conditions of the effect of shear strains and pressure. The method allows: expanding the concentration range of the solubility of cellulose in MMO to 50% and obtaining highly concentrated spinning solutions with a concentration of up to 30%; decreasing the duration of dissolution to 5–10 min; regulating the process of thermal degradation of MMO and cellulose: fabricating “Orcel®” fibre with a high degree of orientation and high strength and modulus of elasticity. The solid-phase amine oxide method of processing cellulose was developed by the contract group at the All-Russian Scientific-Research Institute of Polymer Fibres (VNIIPV): Candidate L. K. Golova (director), candidate N. V. Vasil'eva, Candidate L. K. Kuznetsova. Candidate T. A. Lyubova, Research Associate O. E. Borodina, and Research Associate T. B. Krylova with the participation of leading specialists at the Institute's BI Center (director of the Center, Candidate I. Z. Eifer). The studies of the properties and structure of Orcel® fibre were conducted by leading specialists at the Institute's BIFIM Complex (Professor M. M. Iovleva. Director). Candidates V. N. Smirnova, S. I. Banduryan, T. A. Belousova, L. P. Mil'kova, I. N. Andreeva, L. P. Konovalova, V. G. Brusentsova, Dr. A. T. Kalashnik, Research Associate G. Ya. Rudinskaya, and Dr. A. Sh. Goikhman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Franks and J. K. Varga, U. S. Patent No. 4, 196,282 (1989).

  2. H. Chanzy and A. Peguy, J. Polym. Sci., Polym. Phys.,18, No. 5, 1137–1141 (1980).

    Google Scholar 

  3. H. Chanzy, S. Nawrot, et al., J. Polym. Phys.,20, No. 10, 1909–1924 (1982).

    Google Scholar 

  4. B. Lukanoff and H. Schleicher, East German Patent No. 158,656 (1983); Chem. Abstr., 98217475s, CA.

  5. W. Berger, Lenzinger Ber., No. 9, 11–18 (1994).

    Google Scholar 

  6. S. Davis, Chemiefas./Textilind.,39, No. 4, 347–348 (1989).

    Google Scholar 

  7. L. Vollbracht, Chemiefas./Textilind.,39, No. 9, 935–936, 938, 942 (1978).

    Google Scholar 

  8. A. Peguy and B. Dache, 33rd IUPAC Int. Symp. Macromol., Montreal (July), pp. 8–13.

  9. W. B. Davidson, Am. Text.,15, No. 9, 26–27 (1986).

    Google Scholar 

  10. A. A. Kapkaev, Khim. Volokna., No. 2, 3–9 (1995).

    Google Scholar 

  11. C. Michels, R. Maron, and E. Taeger, Lenzinger Ber., No. 9, 57–61 (1994).

    Google Scholar 

  12. C. C. McCorsley and J. K. Varga, US Patent No. 4,142,913 (1979).

  13. C. C. McCorsley, US Patent No. 414,080 (1979).

  14. S. P. Papkov and V. G. Kulichikhin, Khim. Volokna, No. 2, 29–33 (1981).

    Google Scholar 

  15. V. G. Kulichikhin, Yu. Ya. Belousov, et al., Proceedings of the All-Union Seminar “Structure and Reactivity of Cellulose and Its Derivatives” [in Russian], Minsk (1982), pp. 27–29.

  16. Yu. Ya. Belousov, N. V. Vasil'eva, et al., Khim. Volokna, No. 1, 32–33 (1981).

    Google Scholar 

  17. M. M. Iovleva, A. Sh. Goikhman, et al., Vysokomolek. Soedin.,B25, No. 11, 803 (1983).

    Google Scholar 

  18. E. G. Kogan, V. A. Platonov, et al., Khim. Volokna, No. 4, 30–32 (1984).

    Google Scholar 

  19. V. V. Romanov, N. P. Kruchinin, et al., Khim. Volokna, No. 6, 30–31 (1985).

    Google Scholar 

  20. L. K. Golova, V. G. Kulichikhin, and S. P. Papkov, Vysokomolek. Soedin.,A27, No. 9, 1795–1809 (1986).

    Google Scholar 

  21. T. A. Belousova, M. V. Shablygin, et al., Vysokomolek. Soedin.,A28, No. 5, 999–1005 (1986).

    Google Scholar 

  22. S. P. Papkov and I. P. Baksheev (eds.), Physicochemical Principles of Fabrication of Hydrated Cellulose Fibres by Nontraditional Methods [in Russian], Mytishchi (1989), p. 166.

  23. L. K. Golova, T. P. Stepanova, et al., Khim. Drevesiny, No. 2, 33–37 (1987).

    Google Scholar 

  24. M. M. Iovleva, Vysokomolek. Soedin.,A31, No. 4, 808–812 (1989).

    Google Scholar 

  25. C. C. J. Culvenor and Ph. D. Phil, Rev. Pure Appl. Chem., No. 20, 20–23 (1953).

    Google Scholar 

  26. P. Navard and J. M. Haudin, J. Therm. Anal.,22, No. 1, 107–118 (1981).

    Google Scholar 

  27. L. K. Golova, O. E. Andreeva, et al., Vysokomolek. Soedin.,A28, No. 11, 2308–2312 (1986).

    Google Scholar 

  28. L. K. Golova, O. E. Borodina, et al., Khim. Volokna, No. 3, 30–32 (1987).

    Google Scholar 

  29. E. Taeger, C. Michels, and A. Nechwatal, Papier, No. 12, 784–788 (1991).

    Google Scholar 

  30. L. K. Golova, V. V. Romanov, and O. V. Lunina, Russian Federation Patent No. 1,645,308 (1992).

  31. T. A. Akopova, S. Z. Rogovina, et al., Vysokomolek. Soedin.,B33, No. 10, 735–737 (1991).

    Google Scholar 

  32. S. Z. Rogovina, V. A. Zhorin, and N. S. Enikolopyan, J. Appl. Polym. Sci., No. 57, 439–447 (1995).

    Google Scholar 

  33. L. K. Golova, N. V. Vasil'eva, et al., in: Proceedings of the VIth International Conference on “Problems of Solvation and Complexation in Solutions [in Russian], No. 10, Ivanovo (1995).

  34. M. M. Iovleva, V. N. Smirnova, et al., Vysokomolek. Soedin.,A28, No. 4, 749–752 (1986).

    Google Scholar 

  35. I. D. Zenkov, L. K. Golova, and O. E. Borodina, in: Proceedings of the All-Union Scientific Conference on Chemistry, Technology, and Use of Cellulose and Its Derivatives [in Russian], Suzdal' (1990). p. 233.

  36. T. I. Borisova, N. V. Afanas'eva, et al., Vysokomolek. Soedin.,A35, No. 8, 1326–1331 (1993).

    Google Scholar 

  37. O. E. Borodina, L. K. Golova, et al., in: Proceedings of the VIth International Conference on Problems of Solvation and Complexation in Solutions [in Russian], No. 4, Ivanovo (1995).

  38. R. M. Kolontyrskii, N. V. Vasil'eva, et al., in: Proceedings of the XVIIth Symposium Rheology-92 [in Russian], Dnepropetrovsk (1992). p. 109.

  39. L. P. Braverman, V. V. Romanov, et al., Khim. Volokna, No. 6, 32–34 (1990).

    Google Scholar 

  40. H. Chanzy and A. Peguy, Paper and Textile Division, Houston (1980), p. 23.

  41. P. Navard and J. Haudin, Brit. Polym. J.,12, No. 4, 174–176 (1980).

    Google Scholar 

  42. L. K. Golova and N. V. Vasil'eva, in: Proceedings of the IInd International Conference on Lyotropic Crystals [in Russian], Ivanovo (1993), p. 45.

  43. L. K. Golova, N. V. Vasil'eva, et al., in: Proceedings of the IIIrd All-Russian Symposium on Liquid Crystalline Polymers [in Russian], Chernogolovka (1995), p. 72.

  44. British Patent No. 8,216,566.

  45. US Patent No. 4,246,221.

Download references

Authors

Additional information

All-Russian Scientific-Research Institute of Polymer Fibres, Mytishchi. Translated from Khimicheskie Volokna, No. 1, pp. 13–23, January–February, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golova, L.K. Processing of cellulose via highly concentrated “solid solutions”. Fibre Chem 28, 5–16 (1996). https://doi.org/10.1007/BF01130691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130691

Keywords

Navigation