Skip to main content
Log in

Features of the amorphous-crystalline structure of UHMWPE

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

To reveal the features of the structure of UHMWPE that depend on the catalytic system used for synthesis, a comparative study of the sets of laboratory and commercial powders of UHMWPE synthesized on different catalysts in the slurry process under different conditions is conducted. This study includes the use of various modern physical methods, such as transmission and scanning electron microscopy, X-ray analysis, Raman scattering spectroscopy, differential scanning calorimetry, nuclear magnetic resonance, and thermoluminescence. All nascent particles are shown to have a complex hierarchical structure. In all reactor powders, the elementary structural unit is crystalline lamellas, whose dimensions and mutual orientation are dependent on the type of catalytic system. In the synthesis on the supported catalysts, the character of the formed structure depends on the characteristics of the substrate. During the breakdown of the substrate in the course of the synthesis, fibrils form. The colloidal dimensions of the catalyst particles are responsible for a more uniform lamellar structure of the reactor powders. The conformational composition of the segments of molecules in the interlamellar regions of the reactor powders is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Geil, Polymer Single Crystals (Wiley, New York, 1963; Khimiya, Moscow, 1968).

    Google Scholar 

  2. B. Wunderlich, Macromolecular Physics (Academic, New York, 1973; Mir, Moscow, 1976)

    Google Scholar 

  3. V. A. Marikhin and L. P. Myasnikova, Supramolecular Structure of Polymers (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  4. P. Smith, H. D. Chanzy, and B. P. Rotzinger, Polym. Commun. 26(9), 258 (1985).

    CAS  Google Scholar 

  5. M. A. Shcherbina, S. N. Chvalun, V. I. Selikhova, et al., Polymer Science, Ser. A 41, 1121 (1999) [Vysokomol. Soedin., Ser. A 41, 1768 (1999)].

    Google Scholar 

  6. B. R. Rotzinger, H. D. Chanzy, and P. Smith, Polymer 30, 1814 (1989).

    Article  CAS  Google Scholar 

  7. T. Kanamoto, T. Ohama, K. Tanaka, et al., Polymer 28, 517 (1987).

    Article  Google Scholar 

  8. S. Ottani, E. Ferracini, A. Ferrero, et al., Macromolecules 28, 2411 (1995).

    Article  CAS  Google Scholar 

  9. G. Weedon, in High Performance Fibers, Ed. by J. W. S. Hearle (Woodhead, Boca Raton, 2001), p. 132.

    Google Scholar 

  10. G. W. Halldin and I. L. Kamel, Polym. Eng. Sci. 17, 21 (1977).

    Article  CAS  Google Scholar 

  11. T. Maeda and S. Matsuoka, J. Fac. Eng. Univ. (Tokyo) 33, 191 (1975).

    CAS  Google Scholar 

  12. K. S. Han, J. F. Wallace, R. W. Truss, and P. H. Geil, Polym. Eng. Sci. 20, 747 (1980).

    Article  Google Scholar 

  13. S. Hambir and J. P. Jog, Bull. Mater. Sci. 23, 221 (2000).

    Article  CAS  Google Scholar 

  14. K. S. Han, J. F. Wallace, R. W. Truss, and P. H. Geil, J. Macromol. Sci., Phys. 19, 313 (1981).

    Article  Google Scholar 

  15. Farbwerke Hoechst, UK Patent No. 960 232 (1964).

  16. J. Y. Gutman and J. E. Guillet, Macromolecules 1, 461 (1968).

    Article  Google Scholar 

  17. P. Blais and R. St. J. Manley, J. Polym. Sci., Part A-1 6, 291 (1968).

    Article  CAS  Google Scholar 

  18. H. D. Chanzy, J. F. Revol, R. H. Marchessault, and A. Lamande, Kolloid Z. Z. Polym. 25, 563 (1973).

    Article  Google Scholar 

  19. P. Galli and G. Vecellio, Prog. Polym. Sci. 26, 1287 (2001).

    Article  CAS  Google Scholar 

  20. J. T. M. Pater, G. Weickert, J. Loos, and W. P. M. Van Swaaij, Chem. Eng. Sci. 56, 4107 (2001).

    Article  CAS  Google Scholar 

  21. X. Zheng, M. S. Pimplapure, G. Weickert, and J. Loos, Macromol. Rapid Commun. 27, 15 (2006).

    Article  Google Scholar 

  22. L. D. Uzhinova, A. A. Baulin, N. A. Platé, et al., Vysokomol. Soedin., Ser. B 20, 73 (1978).

    CAS  Google Scholar 

  23. A. G. Wikjord and J. R. St. Manley, J. Macromol. Sci., Phys. 2, 501 (1968).

    Google Scholar 

  24. H. Uehara, T. Yamanobe, and T. Komoto, Macromolecules 33, 4861 (2000).

    Article  CAS  Google Scholar 

  25. E. M. Ivan’kova, L. P. Myasnikova, V. A. Marikhin, et al., J. Macromol. Sci., Phys. 40, 813 (2001).

    Article  Google Scholar 

  26. A. Muňoz-Escalona and A. Parada, J. Cryst. Growth 48, 250 (1980).

    Article  Google Scholar 

  27. X.-Y. Wang and R. Salovey, J. Appl. Polym. Sci. 34, 593 (1987).

    Article  CAS  Google Scholar 

  28. Y. M. T. Tervoort-Engelen and P. J. Lemstra, Polym. Commun. 32(11), 343 (1991).

    CAS  Google Scholar 

  29. V. M. Egorov, E. M. Ivan’kova, V. A. Marikhin, et al., Polymer Science, Ser. A 41, 1131 (1999) [Vysokomol. Soedin., Ser. A 41, 1779 (1999)].

    Google Scholar 

  30. R. A. Phillips, J. Polym. Sci., Part B: Polym. Phys. 36, 495 (1998).

    Article  CAS  Google Scholar 

  31. W. L. Jarrett, R. S. Porter, and L. J. Mathias, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 31, 647 (1990).

    CAS  Google Scholar 

  32. J. T. E. Cook, P. G. Klein, I. M. Ward, et al., Polymer 41, 8615 (2000).

    Article  CAS  Google Scholar 

  33. S. Rastogi, D. R. Lippits, G. W. H. Hoehne, et al., J. Phys.: Condens. Matter 19, 205122 (2007).

    Article  Google Scholar 

  34. F. G. Morin, G. Delmas, and D. F. R. Gilson, Macromolecules 28, 3248 (1995).

    Article  CAS  Google Scholar 

  35. L. P. Myasnikova, E. A. Egorov, V. V. Zhizhenkov, et al., Polymer Science, Ser. A 50, 640 (2008) [Vysokomol. Soedin., Ser. A 50, 989 (2008)].

    Article  Google Scholar 

  36. D. Barron and C. Birkinshaw, Polymer 49, 3111 (2008).

    Article  CAS  Google Scholar 

  37. K. Tsobkallo, V. Vasilieva, M. Kakiage, et al., J. Macromol. Sci., Phys. 45, 407 (2006).

    Article  CAS  Google Scholar 

  38. L. H. Wang, S. Ottani, and R. S. Porter, J. Polym. Sci., Part B: Polym. Phys. 29, 1189 (1991).

    Article  CAS  Google Scholar 

  39. Y. L. Joo, O. H. Han, H.-K. Lee, and J. K. Song, Polymer 41, 1355 (2000).

    Article  CAS  Google Scholar 

  40. H. Uehara, M. Nakae, T. Kanamoto, et al., Polymer 39, 6127 (1998).

    Article  CAS  Google Scholar 

  41. V. M. Egorov, E. M. Ivan’kova, V. A. Marikhin, et al., J. Macromol. Sci., Phys. 41, 939 (2002).

    Article  Google Scholar 

  42. V. I. Selikhova, A. N. Ozerin, and G. P. Belov, Vysokomol. Soedin. 16, 301 (1974).

    CAS  Google Scholar 

  43. H. Uehara, A. Uehara, M. Kakiage, et al., Polymer 48, 4547 (2007).

    Article  CAS  Google Scholar 

  44. G. H. Michler, V. Seydewitz, M. Buschnakowski, et al., J. Appl. Polym. Sci. 118, 866 (2010).

    CAS  Google Scholar 

  45. V. A. Aulov, M. A. Shcherbina, S. N. Chvalun, et al., Polymer Science, Ser. A 46, 620 (2004) [Vysokomol. Soedin., Ser. A 46, 1005 (2004)].

    Google Scholar 

  46. V. A. Aulov, I. O. Kuchinina, and A. N. Ozerin, Dokl. Akad. Nauk 430, 61 (2010).

    Google Scholar 

  47. D. V. Lebedev, Yu. M. Boiko, E. M. Ivan’kova, et al., Perspekt. Mater. 7, 181 (2009).

    Google Scholar 

  48. E. M. Ivan’kova, D. V. Lebedev, V. A. Marikhin, et al., Powders Phys. Solid State 51, 1744 (2009).

    Article  Google Scholar 

  49. P. Pakhomov, S. Khizhnyak, H. Reuter, et al., Polymer 44, 4651 (2003).

    Article  CAS  Google Scholar 

  50. B. Wunderlich, Macromolecular Physics (Academic, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  51. V. A. Bershtein and V. M. Egorov, Differential Scanning Calorimetry in Polymer Physics and Chemistry (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  52. A. Lösche, Kerninduktion (Deuscher Verlag der Wissenschaften, Berlin, 1957; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  53. E. A. Egorov and V. V. Zhizhenkov, J. Polym. Sci., Part B: Polym. Phys. 20, 1089 (1982).

    CAS  Google Scholar 

  54. F. J. Balta-Calleja and C. G. Vonk, X-Ray Scattering of Synthetic Polymers (Elsevier, Amsterdam, 1989).

    Google Scholar 

  55. L. Myasnikova, N. Blashenkov, Yu. Boiko, et al., Macromol. Symp. 242, 182 (2006).

    Article  CAS  Google Scholar 

  56. A. Siegman, I. Raiter, M. Narkis, and P. Eyerer, J. Mater. Sci. 21, 1180 (1986).

    Article  Google Scholar 

  57. T. Davidson, J. Polym. Sci., Part B: Polym. Phys. 8, 855 (1970).

    CAS  Google Scholar 

  58. J. Loos, in Reactor Powder Morphology, Ed. by L. P. Myasnikova and P. Lemstra (Nova Science, New York, 2010).

    Google Scholar 

  59. W. L. Jarrett, L. J. Mathias, and R. S. Porter, Macromolecules 23, 5164 (1990).

    Article  CAS  Google Scholar 

  60. S. Ottani, B. E. Wagner, and R. S. Porter, Polymer 31, 370 (1990).

    CAS  Google Scholar 

  61. K. E. Russell, B. K. Hunter, and R. D. Heyding, Polymer 38, 1409 (1997).

    Article  CAS  Google Scholar 

  62. V. A. Aulov, N. F. Bakeev, S. N. Chvalun, and A. N. Ozerin, in Reactor Powder Morphology, Ed. by L. P. Myasnikova and P. Lemstra (Nova Science, New York, 2010).

    Google Scholar 

  63. I. V. Kuleshov and V. G. Nikol’skii, Radiothermoluminescence of Polymers (Khimiya, Moscow, 1991) [in Russian].

    Google Scholar 

  64. L. Zlatkevich, Radiothermoluminescence and Transitions in Polymers (Springer, New York, 1987).

    Google Scholar 

  65. G. I. Mukhammedov, Extended Abstract of Candidate’s Dissertation in Chemistry (Moscow, 1976).

  66. J. Smook and G. J. Pennings, Colloid Polym. Sci. 262, 712 (1984).

    Article  CAS  Google Scholar 

  67. V. A. Marikhin, V. A. Bershtein, V. M. Egorov, and L. P. Myasnikova, Vysokomol. Soedin., Ser. A 28, 1983 (1986).

    CAS  Google Scholar 

  68. E. A. Egorov and V. V. Zhizhenkov, Vysokomol. Soedin., Ser. A 24, 67 (1982).

    CAS  Google Scholar 

  69. E. A. Egorov, V. V. Zhizhenkov, V. A. Marikhin, et al., Vysokomol. Soedin., Ser. A 25, 693 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Myasnikova.

Additional information

Original Russian Text © V.M. Egorov, E.M. Ivan’kova, V.B. Kulik, D.V. Lebedev, L.P. Myasnikova, V.A. Marikhin, E.I. Radovanova, M.A. Yagovkina, V. Seydewitz, S. Goerlitz, G.H. Michler, U. Nöchel, F.J. Balta-Calleja, 2011, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2011, Vol. 53, No. 7, pp. 1246–1260.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, V.M., Ivan’kova, E.M., Kulik, V.B. et al. Features of the amorphous-crystalline structure of UHMWPE. Polym. Sci. Ser. C 53, 75–88 (2011). https://doi.org/10.1134/S1811238211050018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238211050018

Keywords

Navigation