Skip to main content
Log in

Influence of draw ratio on morphological and structural changes in hot-drawing of UHMW polyethylene fibres as revealed by DSC

  • Bioactive Polymers
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The melting behaviour of gel-spun, ultra-high molecular weight polyethylene fibres was investigated in an attempt to characterize their morphology after various stages of hot-drawing at 148 ‡C. In this drawing process a shish-kebab morphology is transformed into a smooth fibrillar structure. It was concluded that this transition initially proceeds by pulling elastically inactive loops, originally present in the folded chain lamellae of the shish-kebabs, taut between entanglements. Thereafter a considerable amount of entanglements is removed by pulling molecular chain ends through them, until ca. 2.5 entangelements per molecule remain in the ultimately drawn fibres. The fibrils in the fully drawn fibres were found to be composed of chain-extended orthorhombic crystallites with an average length of 70 nm, which are interrupted by defect regions (containing trapped entanglements and chain ends) of about 4 nm in length. If free shrinkage of the fibre was allowed, this structure had an equilibrium melting temperature of 140.5 ‡C. Upon constrained melting of the filaments, a solid-solid phase transition could be observed in the DSC thermograms (at a temperature of ca. 150 ‡C), associated with a transition of the chain-extended orthorhombic blocks in the fibrils into a hexagonal phase. The heat effect associated with this solid-solid transition in perfectly crystalline polyethylene (δH o−h ) was estimated to be 205 kJ/kg, whereas for the heat of fusion of the hexagonal phase (δH h−m ) a value of 81 kJ/kg was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pennings AJ, van der Mark JMAA, Kiel AM (1970) Koll Z u Z Polymere 237:336

    Google Scholar 

  2. Wunderlich B (1969) Koll Z u Z Polymere 231:605

    Google Scholar 

  3. Zachmann HG (1967) Koll Z u Z Polymere 216:180

    Google Scholar 

  4. Wunderlich B, Czornyj G (1977) Macromolecules 10:906

    Google Scholar 

  5. Czornyj G, Wunderlich B (1977) Makromol Chem 178:843

    Google Scholar 

  6. Pennings AJ, Zwijnenburg A (1979) J Polym Sci, Polym Phys Ed 17:1011

    Google Scholar 

  7. Grubb DT, Hill MJ (1980) J Cryst Growth 48:321

    Google Scholar 

  8. Weeks Ne, Porter RS (1975) J Polym Sci, Polym Phys Ed 13:2049

    Google Scholar 

  9. Clements J, Capaccio G, Ward IM (1979) J Polym Sci, Polym Phys Ed 17:693

    Google Scholar 

  10. Zwijnenburg A, Pennings AJ (1976) Coll Polym Sci 254:868

    Google Scholar 

  11. Pennings AJ (1980) J Cryst Growth 48:574

    Google Scholar 

  12. Hill MJ, Barham PJ, Keller A (1980) Coll Polym Sci 258:1023

    Google Scholar 

  13. Todoki M, Kawaguchi T (1977) J Polym Sci, Polym Phys Ed 15:1507

    Google Scholar 

  14. Capaccio G, Ward IM (1982) Coll Polym Sci 260:46

    Google Scholar 

  15. Smook J, Pennings AJ (1984) J Mater Sci 19:31

    Google Scholar 

  16. Smook J, Flinterman M, Pennings AJ (1980) Polym Bull 2:775

    Google Scholar 

  17. Smook J, Pennings AJ (1983) Polym Bull 10:291

    Google Scholar 

  18. van Hutten PF, Koning CE, Smook J, Pennings AJ (1983) Polym Comm 24:237

    Google Scholar 

  19. Smook J, Torfs JCM, van Hutten PF, Pennings AJ (1980) Polym Bull 2:293, Huisman R, Heuvel HM, private communication

    Article  Google Scholar 

  20. Heuvel HM, Huisman R, Lind KCJB (1976) J Polym Sci, Polym Phys Ed 14:921

    Google Scholar 

  21. Posthuma de Boer A, Pennings AJ (1977) Macromolecules 10:981

    Google Scholar 

  22. Smook J, Pennings AJ, J Mater Sci, in press

  23. Grubb DT (1983) J Polym Sci, Polym Phys Ed 21:165

    Google Scholar 

  24. Smook J, Hamersma W, Pennings AJ (1984) J Mater Sci 19:1359

    Google Scholar 

  25. Zachmann HG (1965) Koll Z u Z Polymere 206:25

    Google Scholar 

  26. Kalb B, Pennings AJ (1980) J Mater Sci 15:2584

    Article  Google Scholar 

  27. Pennings AJ, Smook J, de Boer J, Gogolewski A, van Hutten PF, (1983) Pure Appl Chem 55:777

    Google Scholar 

  28. Zwijnenburg A, van Hutten PF, Pennings AJ, Chanzy HD (1978) Coll Polym Sci 256:729

    Google Scholar 

  29. Predecki P, Statton W (1967) Appl Polym Symp 6:165

    Google Scholar 

  30. Peterlin A (1977) J Appl Phys, 48:4099

    Google Scholar 

  31. Schultz JM, Lin JS, Hendricks RW, Peterman J, Gohil RM (1981) J Polym Sci, Polym Phys Ed 19:609

    Google Scholar 

  32. Westrum Jr EF, Mc Cullough JP (1963) Physics and Chemistry of the Organic Solid State, Vol 1, Fox D, Labes MM, Weissberger A, Eds, J Wiley and Sons, New York, p 1

    Google Scholar 

  33. Ungar G, Keller A (1980) Polymer 21:1273

    Google Scholar 

  34. Clough SB (1970) J Macromol Sci B 4:199

    Google Scholar 

  35. Bassett DC, Block S, Piermarini G (1974) J Appl Phys 45:4146

    Google Scholar 

  36. Reneker DH (1962) J Polym Sci 59:S39

    Google Scholar 

  37. Hoffmann JD (1979) Polymer 20:1071

    Google Scholar 

  38. Smook J, Pennings AJ (1982) J Appl Polym Sci 27:2209

    Google Scholar 

  39. Flory PJ, Hoeve CH, Cifferri A (1957) J Polym Sci 34:337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smook, J., Pennings, J. Influence of draw ratio on morphological and structural changes in hot-drawing of UHMW polyethylene fibres as revealed by DSC. Colloid & Polymer Sci 262, 712–722 (1984). https://doi.org/10.1007/BF01451543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451543

Key words

Navigation