Skip to main content
Log in

Heat Transfer Enhancement on Multilayer Wire Mesh Coatings and Wire Mesh Coatings Combined with Other Surface Modifications—A Review

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents an overview of experimental studies on the influence of mesh coatings of heat-releasing elements on heat transfer enhancement under various conditions: pool boiling of liquid, evaporation and boiling in thin horizontal layers of liquid, in falling films of liquid, and in flows in channels. Studies on the topic are discussed in detail, from key works with mesh coatings to latter-day research using gradient mesh coatings, combinations of mesh coating with other kinds of modifications, or application of additive manufacturing (3D printing). Models that have been developed specifically for mesh coatings for calculation of the heat transfer coefficient and critical heat flux and are available in the literature are presented. The heat transfer intensification data obtained for the considered mesh coatings are compared with data for up-to-date highly efficient micro—nano-structured surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. Except for the achieved sevenfold enhancement at boiling in thin layers of water in [6], but only at low heat fluxes.

  2. That is, only via change in the structure of the heat-transfer surface.

  3. First of all, we mean studies with mesh coatings tightly adjacent to a heat-releasing wall, numerous studies on the application of metallic meshes for making wicks of heat pipes almost unaffected.

  4. Hereinafter, besides its direct meaning, mesh is used as the mesh number, i.e., the number of openings per linear inch of mesh.

  5. Distance between the wires.

  6. It was decided to leave the works using surface roughening in addition to mesh coatings [6, 32] in this paragraph without transferring them to paragraph 2.2, where more complicated combined coatings are discussed.

  7. As it was previously done by the authors of [29].

  8. In this case, the aperture will be 1 mm, which coincides with the bubble departure diameter for water boiling.

  9. It should be understood that the record heat transfer results obtained on prototypes of enhancing surfaces [48, 49, etc.] still need further verification and validation, just as highly effective combined surfaces need testing for stability of thermophysical and chemical properties and adaptation for industrial use.

REFERENCES

  1. Heat Transfer Handbook, vol. 1, Bejan, A. and Kraus, A.D., Eds., John Wiley & Sons, 2003.

    Google Scholar 

  2. Zhang, S., Jiang, X., Li, Y., Chen, G., Sun, Y., Tang, Y., and Pan, C., Extraordinary Boiling Enhancement Through Micro-Chimney Effects in Gradient Porous Micromeshes for High-Power Applications, Energy Convers. Manag., 2020, vol. 209, p. 112665.

    Article  Google Scholar 

  3. Mori, S. and Utaka, Y., Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2534–2557.

    Article  Google Scholar 

  4. Li, C., Peterson, G.P., and Wang, Y., Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects, ASME J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1312–1319.

    Article  Google Scholar 

  5. Sloan, A., Penley, S., and Wirtz, R.A., Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface, in Procs. of 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009, pp. 246–253.

  6. Tsay, J.Y., Yan, Y.Y., and Lin, T.F., Enhancement of Pool Boiling Heat Transfer in a Horizontal Water Layer Through Surface Roughness and Screen Coverage, Heat Mass Transfer, 1996, vol. 32, no. 1, pp. 17–26.

    Article  ADS  Google Scholar 

  7. Gerlach, D.W. and Joshi, Y.K., Boiling Performance of Flourinert PF 5060 on Confined and Unconfined Wire Meshes Soldered to the Substrate, Procs. of ASME Int. Mechanical Engineering Congress and Exposition, 2005, vol. 42215, pp. 807–811.

  8. Liu, J.W., Lee, D.J., and Su, A., Boiling of Methanol and HFE-7100 on Heated Surface Covered with a Layer of Mesh, Int. J. Heat Mass Transfer, 2001, vol. 44, no. 1, pp. 241–246.

    Article  Google Scholar 

  9. Dąbek, L., Kapjor, A. and Orman, Ł.J., Distilled Water and Ethyl Alcohol Boiling Heat Transfer on Selected Meshed Surfaces, Mech. Industry, 2019, vol. 20, no. 7, p. 701.

    Article  ADS  Google Scholar 

  10. Pastuszko, R., Pool Boiling on Micro-Fin Array with Wire Mesh Structures, Int. J. Thermal Sci., 2010, vol. 49, no. 12, pp. 2289–2298.

    Article  Google Scholar 

  11. Chien, L.H. and Tsai, Y.L., An Experimental Study of Pool Boiling and Falling Film Vaporization on Horizontal Tubes in R-245fa, Appl. Thermal Engin., 2011, vol. 31, nos. 17/18, pp. 4044–4054.

    Article  Google Scholar 

  12. Chien, L.H. and Hwang, H.L., An Experimental Study of Boiling Heat Transfer Enhancement of Mesh-on-Fin Tubes, J. Enhanced Heat Transfer, 2012, vol. 19, no. 1, pp. 75–86.

    Article  Google Scholar 

  13. Kim, H., Park, Y., Kim, H., Lee, C., Jerng, D.W., and Kim, D.E., Critical Heat Flux Enhancement by Single-Layered Metal Wire Mesh with Micro and Nano-Sized Pore Structures, Int. J. Heat Mass Transfer, 2017, vol. 115, pp. 439–449.

    Article  Google Scholar 

  14. Huang, S., Wang, L., Pan, Z., and Zhou, Z., Experimental Investigation of a New Hybrid Structured Surface for Subcooled Flow Boiling Heat Transfer Enhancement, Appl. Thermal Engin., 2021, vol. 192, p. 116929.

    Article  Google Scholar 

  15. Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933.

    Article  Google Scholar 

  16. Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, pp. 280–312.

    Article  Google Scholar 

  17. McCarthy, M., Gerasopoulos, K., Maroo, S.C., and Hart, A.J., Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement, Nanoscale Microscale Thermophys. Engin., 2014, vol. 18, pp. 288–310.

    Article  ADS  Google Scholar 

  18. Kempers, R., Ewing, D., and Ching, C.Y., Effect of Number of Mesh Layers and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipes, Appl. Thermal Engin., 2006, vol. 26, nos. 5/6, pp. 589–595.

    Article  Google Scholar 

  19. Salvagnini, W.M. and Taqueda M.E.S., A Falling-Film Evaporator with Film Promoters, Ind. Engin. Chem. Res., 2004, vol. 43, no. 21, pp. 6832–6835.

    Article  Google Scholar 

  20. Åkesjö, A., Gourdon, M., Vamling, L., Innings, F., and Sasic, S., Modified Surfaces to Enhance Vertical Falling Film Heat Transfer—An Experimental and Numerical Study, Int. J. Heat Mass Transfer, 2019, vol. 131, pp. 237–251.

    Article  Google Scholar 

  21. Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling Down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158.

    Article  Google Scholar 

  22. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., The Influence of the Surface Structuring Type on Heat Transfer in Falling Films of the Refrigerant Mixture, J. Phys.: Conf. Ser., 2019, vol. 1369, no. 1, p. 012046.

  23. Yao, Y., Pavlenko, A.N., and Volodin, O.A., Effects of Layers and Holes on Performance of Wire Mesh Packing, J. Eng. Therm., 2015, vol. 24, no. 3, pp. 222–236.

    Article  Google Scholar 

  24. Franco, A., Latrofa, E.M., and Yagov, V.V., Heat Transfer Enhancement in Pool Boiling of a Refrigerant Fluid with Wire Nets Structures, Exp. Thermal Fluid Sci., 2006, vol. 30, no. 3, pp. 263–275.

    Article  Google Scholar 

  25. Hasegawa, S., Echigo, R., and Irie, S., Boiling Characteristics and Burnout Phenomena on Heating Surface Covered with Woven Screens, J. Nuclear Sci. Technol., 1975, vol. 12, no. 11, pp. 722–724.

    Article  Google Scholar 

  26. Ament, D.L., Boiling Heat Transfer in Thin Liquid Films with a Wire Mesh Screen on the Liquid Surface, PhD thesis, Georgia Institute of Technology, 1994.

  27. Tolubinskiy, V.I., Antonenko, V.A., and Ivanenko, G.V., Crisis Phenomena in Boiling on Submerged Wire Mesh-Wrapped Wall, Heat Transfer–Soviet Res., 1989, vol. 21, pp. 531–535.

    Google Scholar 

  28. Afanas’ev, B.A., Vinogradova, E.P., and Smirnov, G.F., Crisis Phenomena Upon Evaporation in Grid Capillary and Porous Coatings and Arterial Structures of Heat Pipes, J. Engin. Phys., 1985, vol. 49, pp. 1185–1191.

    Article  ADS  Google Scholar 

  29. Asakavičius, J.P., Zukauskas, A.A., Gaigalis, V.A., and Eva, V.K., Heat Transfer from Freon-113, Ethyl Alcohol and Water with Screen Wicks, Heat Transfer–Soviet Res., 1979, vol. 11, pp. 92–100.

    Google Scholar 

  30. Labuntsov, D.A., Heat Exchange during Nucleate Boiling of Liquids, Teploenergetika, 1959, vol. 12, pp. 19–25.

    Google Scholar 

  31. Rannenberg, M. and Beer, H., Heat Transfer by Evaporation in Capillary Porous Wire Mesh Structures, Lett. Heat Mass Transfer, 1980, vol. 7, no. 6, pp. 425–436.

    Article  Google Scholar 

  32. Brautsch, A. and Kew, P.A., The Effect of Surface Conditions on Boiling Heat Transfer from Mesh Wicks, Int. Heat Transfer Conf. Digital Library, Begel House, 2002.

  33. Ghiu, C.D. and Joshi, Y.K., Boiling Performance of Single-Layered Enhanced Structures, ASME J. Heat Transfer, 2005, vol. 127, no. 7, pp. 675–683.

    Article  Google Scholar 

  34. Li, C. and Peterson, G.P., Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size, ASME J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1320–1328.

    Article  Google Scholar 

  35. Li, C. and Peterson, G.P., Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces, ASME J. Heat Transfer, 2007, vol. 129, no. 11, pp. 1465–1475.

    Article  Google Scholar 

  36. Orman, Ł.J., Boiling Heat Transfer on Single Phosphor Bronze and Copper Mesh Microstructures, EPJ Web Conf., 2014, vol. 67, p. 02087.

  37. Dąbek, L., Kapjor, A., and Orman Ł.J., Ethyl Alcohol Boiling Heat Transfer on Multilayer Meshed Surfaces, AIP Conf. Procs., 2016, vol. 1745, no. 1, p. 020005.

  38. Xin, M.D. and Chao, Y.D., Analysis and Experiment of Boiling Heat Transfer on T-Shaped Finned Surfaces, Chem. Eng. Commun., 1987, vol. 50, nos. 1–6, pp. 185–199.

    Article  Google Scholar 

  39. Nishikawa, K., Ito, T., and Tanaka, K., Enhanced Heat Transfer by Nucleate Boiling on a Sintered Metal Layer, Heat Trans. Jpn. Res., 1979, vol. 8, pp. 65–81.

    Google Scholar 

  40. Smirnov, G.F. and Afanasiev, B.A., Investigation of Vaporization in Screen Wick-Capillary Structures, in Procs. of VI Int. Heat Pipe Conf. Advances in Heat Pipe Technology, London, United Kingdom, 1982.

  41. Orman, Ł.J., Correlation for Nucleate Boiling Heat Transfer on Microstructural Coatings, in Procs. of the 3rd World Congress on Momentum, Heat and Mass Transfer (MHMT’18), Budapest, Hungary, 2018, p. ICMFTH 117; DOI: 10.11159/icmfht18.117.

  42. Yamaguchi, H. and James, D.D., Effect of Wire Meshes on Boiling Heat Transfer from a Plane Heating Surfaces, in Procs. of I World Conf. ‘Experimental Heat Transfer, Fluid Mechanics and Thermodynamics’, Dubrovnik, 1988, pp. 587–594.

  43. Orman, Ł.J., Radek, N., Pietraszek, J., and Gontarski, D., Discussion of the Heat Flux Calculation Method during Pool Boiling on Meshed Heaters, System Safety: Human-Technical Facility-Environment, 2020, vol. 2, no. 1, pp. 247–252.

    Google Scholar 

  44. Zhang, C., Zhang, L., Xu, H., Li, P., and Qian, B., Performance of Pool Boiling with 3D Grid Structure Manufactured by Selective Laser Melting Technique, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 570–580.

    Article  Google Scholar 

  45. Pastuszko, R., Pool Boiling Heat Transfer on Micro-Fins with Wire Mesh—Experiments and Heat Flux Prediction, Int. J. Thermal Sci., 2018, vol. 125, pp. 197–209.

    Article  Google Scholar 

  46. Pastuszko, R., Kaniowski, R., and Wójcik, T.M., Comparison of Pool Boiling Performance for Plain Micro-Fins and Micro-Fins with a Porous Layer, Appl. Thermal Engin., 2020, vol. 166, p. 114658.

    Article  Google Scholar 

  47. Chien, L.H. and Webb, R.L., A Nucleate Boiling Model for Structured Enhanced Surfaces, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 14, pp. 2183–2195.

    Article  MATH  Google Scholar 

  48. Jaikumar, A. and Kandlikar, S.G., Ultra-High Pool Boiling Performance and Effect of Channel Width with Selectively Coated Open Microchannels, Int. J. Heat Mass Transfer, 2016, vol. 95. pp. 795–805.

    Article  Google Scholar 

  49. Bai, L., Zhang, L., Lin, G., and Peterson, G.P., Pool Boiling with High Heat Flux Enabled by a Porous Artery Structure, Appl. Phys. Lett., 2016, vol. 108, no. 23, p. 233901.

    Article  ADS  Google Scholar 

  50. Motezakker, A.R., Sadaghiani, A.K., Çelik, S., Larsen, T., Villanueva, L.G., and Koşar, A., Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling, Int. J. Heat Mass Transfer, 2019, vol. 135, pp. 164–174.

    Article  Google Scholar 

  51. Može, M., Zupančič, M., and Golobič, I., Pattern Geometry Optimization on Superbiphilic Aluminum Surfaces for Enhanced Pool Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2020, vol. 161, p. 120265.

    Article  Google Scholar 

  52. Zou, A., Singh, D.P., and Maroo, S.C., Early Evaporation of Microlayer for Boiling Heat Transfer Enhancement, Langmuir, 2016, vol. 32, no. 42, pp. 10808–10814.

    Article  Google Scholar 

  53. Shchelchkov, A.V., Popov, I.A., and Zubkov, N.N., Boiling of a Liquid on Microstructured Surfaces under Free-Convection Conditions, J. Eng. Phys. Thermophys., 2016, vol. 89, no. 5, pp. 1152–1160.

    Article  ADS  Google Scholar 

  54. Volodin, O., Pecherkin, N., Pavlenko, A., and Zubkov, N., Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids, Int. J. Heat Mass Transfer, 2020, vol. 155, p. 119722.

    Article  Google Scholar 

  55. Jun, S., Wi, H., Gurung, A., Amaya, M., and You, S.M., Pool Boiling Heat Transfer Enhancement of Water Using Brazed Copper Microporous Coatings, ASME J. Heat Transfer, 2016, vol. 138, no. 7, p. 071502.

    Article  Google Scholar 

  56. Kutateladze, S.S., A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection, Izv. Akad. Nauk, Otd. Tekh. Nauk, 1951, vol. 4, pp. 529–536.

    Google Scholar 

  57. Zuber, N., Hydrodynamic Aspects of Boiling Heat Transfer, PhD thesis, United States Atomic Energy Commission, Technical Information Service, 1959.

  58. Kutateladze, S.S., Fundamentals of Heat Transfer, New York: Academic Press, 1963.

    MATH  Google Scholar 

  59. Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Volodin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, O.A., Pavlenko, A.N. & Pecherkin, N.I. Heat Transfer Enhancement on Multilayer Wire Mesh Coatings and Wire Mesh Coatings Combined with Other Surface Modifications—A Review. J. Engin. Thermophys. 30, 563–596 (2021). https://doi.org/10.1134/S1810232821040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040020

Navigation