Skip to main content
Log in

Studies on Structural, Dielectric, and Electrical Properties of the PMMA-BNT Ceramics Polymer Composites

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this communication, the structural and electrical properties of modified polymethyl methacrylate bismuth nickel titanate ceramic polymer composites are reported. The nickel doped bismuth titanate ceramics are prepared using a high-temperature solid-state reaction technique and composites with 3 and 10% ceramic fillers are prepared using the solution casting method. The average crystallite size for 3 and 10% ceramic fillers is 28.8 nm and 21 nm respectively. The structural analysis confirms the presence of the nickel phase in the composite films. The scanning electron microscopy micrograph reveals the irregular distribution of ceramic particles over composite films, particularly in 10% fillers. The study of dielectric properties suggests that the composites have a high dielectric constant and low loss, which is related to the irregular distribution of the fillers in the polymer matrix. The conductivity increases with an increase in frequency and it also obeys the universal power law. The impedance study shows the conduction process increases with an increase in frequency and confirms negative temperature coefficient resistance character. The modulus study indicates the presence of dielectric relaxation in a high concentration of ceramic fillers. The semiconductor nature of the composite is confirmed and it may find suitable applications in microelectronic devices and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Yao, C. Xiong, L. Dong, C. Chen, Y. Lei, L. Chen, R. Li, Q. Zhu, and X. Liu, J. Mater. Chem. 19, 2817 (2009).

    Article  CAS  Google Scholar 

  2. Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, and Q. M. Zhang, Appl. Phys. Lett. 76, 3804 (2000).

    Article  CAS  Google Scholar 

  3. E. Nogas-Ćwikiel and H. Bernard, Condens. Matter Phys. 16 (3), 1 (2013).

    Article  Google Scholar 

  4. S. K. Badge and A. V. Deshpande, Solid State Ionics 334, 21 (2019).

    Article  CAS  Google Scholar 

  5. A. Fouskova and L.E. Cross, J. Appl. Phys. 41, 2834 (1970).

    Article  CAS  Google Scholar 

  6. M. Sadashiva, M. Y, Sheikh, N. Khan, R. Kurt, and T. M. D. Gowda, Int. J. Recent. Technol. Eng. 9 (6), 111 (2021).

    Google Scholar 

  7. H. S. Shulman, M. Testorf, D. Damjanovic, and N. Setter, J. Am. Ceram. Soc. 79, 3124 (1996).

    Article  CAS  Google Scholar 

  8. P. Yang, L. Li, H. Yuan, F. Wen, P. Zheng, W. Wu, L. Zhang, G. Wang, and Z. Xu, J. Mater. Chem. C 8, 14910 (2020).

    Article  CAS  Google Scholar 

  9. P. Thiruramanathan, S. K. Sharma, S. Sankar, R. Sankar Ganesh, A. Marikani, and D. Y. Kim, Appl. Phys. A: Mater. Sci. Process. 122, 1006 (2016).

    Article  Google Scholar 

  10. J. S. Harrison and Z. Ounaies, Piezoelectric Polymers (NASA/CR-2001-211422 ICASE Report No. 2001-43, 2001).

  11. S. Mishra, L. Unnikrishnan, S. Kumar Nayak, and S. Mohanty, Macromol. Mater. Eng. 304, 1800463 (2018).

  12. P. Thomas, R. S. E. Ravindran, K. B. R. Varma, in Proceedings of IEEE 10th International Conference on the Properties and Applications of Dielectric Materials (2012), pp. 1–4. https://doi.org/10.1109/icpadm.2012.6319009

  13. R. Zhang, Q. Sheng, L. Ye, S. Long, B. Zhou, F. Wen, J. Yang, G. Wang, and W. Bai, Ceram. Int. 48, 7145 (2022).

    Article  CAS  Google Scholar 

  14. L. M. Oanh, D. B. Do, N. D. Phu, N. T. P. Mai, and N. Van Minh, IEEE Trans Magn. 50 (6), 1 (2014).

    Google Scholar 

  15. C. Rayssi, Kossi S. El, J. Dhahri, and K. Khirouni, RSC Adv. 8, 17139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. J. Joshi, G. S. Grewal, V. Shrinet, T. P. Govindan, and A. Pratap, IEEE Trans. Dielectr. Electr. Insul. 19, 83 (2012).

    Article  CAS  Google Scholar 

  17. N. J. Joshi, G. S. Grewal, V. Shrinet, A. Pratap, and N. J. Buch, Integr. Ferroelectr. 115, 142 (2010).

    Article  CAS  Google Scholar 

  18. A. Kumari and B. Dasgupta Ghosh, Adv. Polym. Technol. 37, 2270 (2018).

    Article  CAS  Google Scholar 

  19. P. N. Vakil, F. Muhammed, D. Hardy, T. J. Dickens, S. Ramakrishnan, and G. F. Strouse, ACS Omega 3, 12813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. Ganga Raju Achary, R. N. P. Choudhary, and S. K. Parida, Process. Appl. Ceram. 14, 146 (2020).

    Article  Google Scholar 

  21. S. K. Parida, M. K. Swain, R. K. Bhuyan, B. Kisan, and R. N. P. Choudhary, J. Electron. Mater. 50, 4685 (2021).

    Article  CAS  Google Scholar 

  22. P. Beena and H. S. Jayanna, Polym. Polym. Compos. 27, 619 (2019).

    CAS  Google Scholar 

  23. S. K. Satapathy, S. Mohanty, A. K Behera, and B. Banarji, Iran. J. Sci. Technol, Trans. A: Sci. 43, 2017 (2019).

    Article  Google Scholar 

  24. P. Yadav, A. K. Srivastava, M. K. Yadav, and R. Kripal, Arab. J. Chem. 12, 440 (2015).

    Article  Google Scholar 

  25. S. S. More, R. J. Dhokane, and S. V. Mohril, Composite 8 (3), 28 (2016).

    Google Scholar 

  26. M. Belal Hossen and A. K. M. Akther Hossain, J. Adv. Ceram. 4, 217 (2015).

    Article  Google Scholar 

  27. M. El Hasnaoui, M. Pedro, F. Graça, M. E. Achour, and L. C. Costa, Mater. Sci. Appl. 2, 1421 (2011).

    CAS  Google Scholar 

  28. M. Nanda, eXPRESS Polym. Lett. 28, 855 (2008).

    Article  Google Scholar 

  29. P. Ganga Raju Achary, R. N. P Choudhary, and S. K. Parida, J. Polym. Res. 27, 244 (2020).

    Article  Google Scholar 

  30. S. K. Parida, SPIN 11 (2), 2150018 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santosh Ku. Satpathy or S. K. Parida.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashmiranjan Patra, Mohanty, D., Nayak, P.K. et al. Studies on Structural, Dielectric, and Electrical Properties of the PMMA-BNT Ceramics Polymer Composites. Polym. Sci. Ser. B 64, 539–545 (2022). https://doi.org/10.1134/S1560090422700208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700208

Navigation