Skip to main content
Log in

Loosely Crosslinked Hydrogel with Combined Water-Retaining and Anti-Erosion Effect

  • POLYMER GELS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A new loosely crosslinked network copolymer consisting of acrylamide, potassium acrylate, starch, and bis(acrylamide) as a crosslinking agent is synthesized. The physicochemical properties of the synthesized copolymer are compared with the properties of a commercial network copolymer of sodium acrylate and acrylamide which is used in agricultural technologies as a water-retaining agent. Both copolymers are water swellable; when swelling in air, the first copolymer absorbs more water than the second one; when swelling in the pores of fine-grained quartz sand, the opposite picture is observed. An aqueous suspension of easily deformable hydrogel particles of the synthesized copolymer (with a particle concentration of 1 wt %) can be applied to the sand surface by spraying, which is impossible for a suspension of elastic weakly deformable particles of the commercial hydrogel. After drying the sand with the synthesized copolymer applied to its surface, a coating is formed that protects the sand from the action of wind and water. The synthesized copolymer at a concentration of up to 0.5 wt % does not have antimicrobial action against bacteria and yeast. On the basis of its physical, chemical, and biological properties, the copolymer can be recommended as a multifunctional soil conditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. K. Khabirov and R. R. Saifullin, Izv. Orenb. Gos. Agrar. Univ. 6 (74), 8 (2018).

    Google Scholar 

  2. A. A. Korolev, Zern. Khoz., No. 6, 16 (2007).

  3. E. N. Kuzin and E. E. Kuzina, Change in Fertility of Grey Forest Soil and Performance of Cereal Crops under Action of Chemical and Biological Amelioration (RIO PGSKhA, Pensa, 2010) [in Russian].

  4. R. E. Sojka, D. L. Bjorneberg, J. A. Entry, R. D. Lentz, and W. J. Orts, Adv. Agron. 92, 75 (2007).

    Article  CAS  Google Scholar 

  5. D. L. Bouranis, A. G. Theodoropoulos, and J. B. Drossopoulos, Commun. Soil Sci. Plant Anal. 26, 1455 (1995).

    Article  CAS  Google Scholar 

  6. L. A. Bimendina, M. G. Yashkarova, L. K. Orazzhanova, and S. E. Kudaibergenov, Eur. Chem. J 7, 139 (2005).

    CAS  Google Scholar 

  7. I. V. Golyadkina and Ya. V. Pankov, Usp. Sovrem. Estestvozn., No. 6, 75 (2016).

  8. Ya. V. Pankov, V. N. Kondrat’ev, and I. V. Golyadkina, Lesotekh. Zh., No. 4, 148 (2012).

  9. K. K. Kubenkulov and A. Kh. Naushabaev, Gidrometeorol. Ekol., No. 1, 98 (2012).

  10. Y.-X. Zang, W. Gong, H. Xie, B.-L. Liu, and H.‑L. Chen, Environ. Technol. Rev. 4, 119 (2015).

    Article  Google Scholar 

  11. T. N. Danilova, T. V. Minnikova, G. V. Mokrikov, K. Sh. Kazeev, Yu. V. Akimenko, S. I. Kolesnikov, and V. V. Yakushev, Agrofizika, No. 1, 1 (2018).

    Google Scholar 

  12. E. I. Godunova and V. N. Gundyrin, Dostizh. Nauki Tekh. APK 29 (5), 57 (2015).

    Google Scholar 

  13. C. Gilbert, S. Peter, N. Wilson, M. Edward, M. Francis, K. Sylvester, and B. Erick, Open J. For. 04 (01), 34 (2014).

    Google Scholar 

  14. A. B. Zezin, S. V. Mikheikin, V. B. Rogacheva, M. F. Zansokhova, A. V. Sybachin, and A. A. Yaroslavov, Adv. Colloid Interface Sci. 226, 17 (2015).

    Article  CAS  Google Scholar 

  15. J. S. Tingle, J. K. Newman, S. L. Larson, C. A. Weiss, and J. F. Rushing, Transp. Res. Rec. 1989-2 (1), 59 (2007).

  16. I. G. Panova, D. D. Khaydapova, L. O. Ilyasov, A. B. Umarova, and A. A. Yaroslavov, Colloids Surf., A 590, 124504 (2020).

    Article  CAS  Google Scholar 

  17. R. H. Karol, Chemical Grouting and Soil Stabilization (Taylor and Francis, New York, 2003).

    Book  Google Scholar 

  18. I. G. Panova, L. O. Ilyasov, D. D. Khaidapova, K. Ogawa, Y. Adachi, and A. A. Yaroslavov, Polym. Sci., Ser. B 62, 491 (2020).

    Article  CAS  Google Scholar 

  19. I. G. Panova, L. O. Ilyasov, D. D. Khaidapova, A. S. Bashina, A. V. Smagin, K. Ogawa, Y. Adachi, and A. A. Yaroslavov, Colloids Surf., A 610, 125635 (2021).

    Article  CAS  Google Scholar 

  20. A. Kul’man, Synthetic Soil Conditioner (Kolos, Moscow, 1982) [in Russian].

    Google Scholar 

  21. W. Abobatta, Adv. Agric. Ennviron. Sci. 1 (2), 59 (2018).

    Google Scholar 

  22. R. D. Lentz, Agron. J. 112, 2569 (2020).

    Article  CAS  Google Scholar 

  23. A. K. Bhardwaj, I. Shainberg, D. Goldstein, D. N. Warrington, and G. J. Levy, Soil Sci. Soc. Am. J. 71, 406 (2007).

    Article  CAS  Google Scholar 

  24. S. M. F. Kabir, P. P. Sikdar, B. Haque, M. A. R. Bhuiyan, A. Ali, and M. N. Islam, Prog. Biomater. 7 (3), 1 (2018).

    Article  Google Scholar 

  25. R. G. Rabadanov, Agrar. Ross., No. 6, 15 (2017).

  26. B. Zhao, H. Jiang, Z. Lin, S. Xu, J. Xie, and A. Zhang, Carbohydr. Polym. 224, 115022 (2019).

    Article  Google Scholar 

  27. R. Michalik and I. Wandzik, Polymers 12, 2425 (2020).

    Article  CAS  Google Scholar 

  28. F. Nnadi and C. Brave, J. Soil Sci. Environ. Manag. 2, 206 (2011).

    Google Scholar 

  29. R. A. Ramli, Polym. Chem. 10, 6073 (2019).

    Article  CAS  Google Scholar 

  30. Y. Bao, J. Ma, and N. Li, Carbohydr. Polym. 84, 76 (2011).

    Article  CAS  Google Scholar 

  31. V. A. Kuznetsov, V. F. Selemenev, V. N. Semenov, and M. V. Bakalova, RF Patent No. 2574722 (2016).

  32. A. Smagin, Eurasian Soil Sci. 36, 301 (2003).

    Google Scholar 

  33. A. V. Smagin, N. B. Sadovnikova, and E. I. Nikolaeva, Eurasian Soil Sci. 47, 78 (2014).

    Article  CAS  Google Scholar 

  34. M. T. van Genuchten, Soil Sci. Soc. Am. J. 44, 892 (1980).

    Article  Google Scholar 

  35. D. D. Khaidapova and E. A. Pestonova, Pochvovedenie 11, 1330 (2007).

    Google Scholar 

  36. J. M. Andrews, J. Antimicrob. Chemother. 48 (1), 5 (2001).

    Article  CAS  Google Scholar 

  37. S. A. Dubrovskii and K. S. Kazanskii, Vysokomol. Soedin., Ser. B 35, 1712 (1993).

    CAS  Google Scholar 

  38. O.E. Filippova, Vysokomol. Soedin, Ser. C 42, 2328 (2000).

    CAS  Google Scholar 

  39. A. Smagin, I. Panova, L. Ilyasov, K., Ogawa, Y. Adachi, and A. Yaroslavov, J. Appl. Polym. Sci. 138, 5075440 (2021).

    Article  Google Scholar 

  40. A. D. Voronin, Fundamentals of Soil Physics (Mosk. Gos. Univ., Moscow, 1986).

    Google Scholar 

  41. E. V. Shein and L. O. Karpachevskii, Theories and Methods of Soil Physics (GrifiK, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-29-05036mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Ilyasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyasov, L.O., Panova, I.G., Khrabrov, N.A. et al. Loosely Crosslinked Hydrogel with Combined Water-Retaining and Anti-Erosion Effect. Polym. Sci. Ser. B 63, 866–873 (2021). https://doi.org/10.1134/S1560090421060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421060105

Navigation