Skip to main content
Log in

Synthesis of Water-Soluble Salts of Poly(amic acids) and Structural Features of Fibers and Films Obtained on Their Basis

  • SYNTHESIS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Three water-soluble salts of poly[(4.4'-oxydiphenylene)pyromellitamic acid] with different chemical structure are synthesized. The data on their stability over time, rheological properties of aqueous solutions, density, and surface tension necessary for electrospinning are presented. Using scanning electron and atomic force microscopy, the structural-morphological characteristics of the synthesized water-soluble salts of poly(amic acids) and submicron fibers formed during electrospinning are studied. On the basis of water-soluble ammonia and triethylammonium salts of poly[(4,4'-oxydiphenylene)pyromellitamic acid] fibrous nonwoven materials are obtained for the first time. For the nonwoven material based on triethylammonium salt, physical and mechanical properties are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. J. Doshi and D. H. Reneker, J. Electrost. 35, 151 (1995).

    Article  CAS  Google Scholar 

  2. D. H. Reneker and L. Chun, Nanotecnology 7, 216 (1996).

    Article  CAS  Google Scholar 

  3. Yu. N. Filatov, Electrospinning of Fibrous Materials (ESF-Process) (Neft’ I gaz, Moscow, 1997) [in Russian].

  4. Y. Dzenis, Science 304, 1917 (2004).

    Article  CAS  Google Scholar 

  5. D. Li and Y. N. Xia, Adv. Mater. 16, 1151 (2004).

    Article  CAS  Google Scholar 

  6. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech. 41, 43 (2007).

    Article  Google Scholar 

  7. I. Yu. Filatov, Yu. N. Filatov, and M. S. Yakushkin, Vestn. MITKhT 3 (5), 3 (2008).

    Google Scholar 

  8. A. Greiner and J. H. Wendorff, Angew. Chem., Int. Ed. 46, 5670 (2007).

    Article  CAS  Google Scholar 

  9. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer 42, 9955 (2001).

    Article  CAS  Google Scholar 

  10. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules 35, 8456 (2002).

    Article  CAS  Google Scholar 

  11. D. Li, Y. Wang, and Y. N. Xia, Nano Lett. 3, 1167 (2003).

    Article  CAS  Google Scholar 

  12. K. Acatay, E. Simsek, C. Ow-Yang, and Y. Z. Menceloglu, Angew. Chem., Int. Ed. 43, 5210 (2004).

    Article  CAS  Google Scholar 

  13. X. Y. Yuan, Y. Y. Zhang, C. H. Dong, and J. Sheng, Polym. Int. 53, 1704 (2004).

    Article  CAS  Google Scholar 

  14. T. Miyoshi, K. Toyohara, and H. Minematsu, Polym. Int. 54, 1187 (2005).

    Article  CAS  Google Scholar 

  15. W. E. Teo and S. Ramakrishna, Nanotecnology 17, 89 (2006).

    Article  Google Scholar 

  16. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, Polyimides – Class of Thermostable Polymers (Nauka, Leningrad, 1983) [in Russian].

    Google Scholar 

  17. N. Changwoon, H. H. Sang, H. L. Myong, S. K. Jong, and S. L. Dai, Polym. Int. 52, 429 (2003).

    Article  Google Scholar 

  18. H. Chaobo, W. Suqing, Z. Hean, L. Tingting, C. Shuiliang, L. Chuilin, and H. Haoqing, Eur. Polym. J. 42, 1099 (2006).

    Article  Google Scholar 

  19. F. Chen, X. Peng, T. Li, S. Chen, X.-F. Wu, D. H. Reneker, and H. Hou, J. Phys. D: Appl. Phys. 41, 025308 (2008).

    Article  Google Scholar 

  20. V. V. Matrenichev, P. V. Popryadukhin, V. P. Sklizkova, V. M. Svetlichnyi, A. E. Kryukov, N. V. Smirnova, E. M. Ivan’kova, E. N. Popova, I. P. Dobrovol’skaya, and V. E. Yudin, Polym. Sci., Ser. A 60, 483 (2018).

    Article  CAS  Google Scholar 

  21. Q. Li, T. Yamashita, K. Horie, H. Yoshimoto, T. Miwa, and Y. Maekawa, J. Polym. Sci., Part A: Polym. Chem. 36, 1329 (1998).

    Article  CAS  Google Scholar 

  22. Y. Ding, B. Bikson, and J. K. Nelson, Macromolecules 35, 905 (2002).

    Article  CAS  Google Scholar 

  23. J. A. Kreuz, A. L. Endrey, F. P. Gay, and C. E. Sroog, J. Polym. Sci., Part A-1: Polym. Chem. 4, 2607 (1966).

    CAS  Google Scholar 

  24. R. J. W. Reynolds and J. D. Seddon, J. Polym. Sci., Polym. Symp. 23, 45 (1968).

  25. S. Jiang, H. Hou, S. Agarwal, and A. Greiner, ACS Sustainable Chem. Eng. 4, 4797 (2016).

    Article  CAS  Google Scholar 

  26. H. Xu, S. Jiang, C. Ding, Y. Zhu, J. Li, and H. Hou, Mater. Lett. 201, 82 (2017).

    Article  CAS  Google Scholar 

  27. M. M. Koton, O. V. Kallistov, V. V. Kudryavtsev, V. P. Sklizkova, and I. G. Silinskaya, Vysokomol. Soedin., Ser. A 21, 532 (1979).

    CAS  Google Scholar 

  28. J. Yang and M.-Hoon Lee, Macromol. Res. 12, 263 (2004).

    Article  CAS  Google Scholar 

  29. T. E. Sukhanova, Yu. G. Baklagina, V. V. Kudryavtsev, T. A. Maricheva, and F. Lednický, Polymer 40, 6265 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.Ya. Volkov for technical assistance in performing X-ray studies.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-03-00568-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Svetlichnyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlichnyi, V.M., Myagkova, L.A., Sukhanova, T.E. et al. Synthesis of Water-Soluble Salts of Poly(amic acids) and Structural Features of Fibers and Films Obtained on Their Basis. Polym. Sci. Ser. B 62, 73–84 (2020). https://doi.org/10.1134/S1560090420020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420020062

Navigation