Skip to main content
Log in

Effect of low molecular additives on the electrospinning of nonwoven materials from a polyamide-6 melt

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The effect of low molecular additives on the structure and properties of polyamide-6-based nonwoven materials obtained via electrospinning from a melt is studied. The introduction of up to 10% salts of higher fatty acids into the polymer melt leads to a decrease in its viscosity and to an increase in its electrical conductivity, thereby making it possible to produce nonwoven materials with an average fiber diameter of <1.5 µm. With the use of DSC, IR spectroscopy, and X-ray diffraction, it is shown that, in nonwoven materials based on polyamide-6, the metastable γ form of crystals prevails, while, in the native polymer, the stable a form predominates. The resulting materials demonstrate high filtration characteristics, and their surface properties are close to superhydrophobic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Hutmacher and P. D. Dalton, Chem.–Asian J. 6, 44 (2011).

    Article  CAS  Google Scholar 

  2. S. S. Ojha, M. Afshari, R. Kotek, and R. E. Gorga, J. Appl. Polym. Sci. 108, 308 (2008).

    Article  CAS  Google Scholar 

  3. D. Aussawasathien, C. Teerawattananon, and A. Vongachariya, J. Membr. Sci. 315, 11 (2008).

    Article  CAS  Google Scholar 

  4. S.-W. Park, H.-S. Bae, Z.-C. Xing, O. H. Kwon, M.-W. Huh, and I.-K. Kang, J. Appl. Polym. Sci. 112, 2320 (2009).

    Article  CAS  Google Scholar 

  5. E. Biber, G. Gündüz, B. Mavis, and U. Colak, Appl. Phys. A: Mater. Sci. Process. 99, 477 (2010).

    Article  CAS  Google Scholar 

  6. D. Cho, E. Zhmayev, and Y. L. Joo, Polymer 52, 4600 (2011).

    Article  CAS  Google Scholar 

  7. X. Li, B. Ding, J. Lin, J. Yu, and G. Sun, J. Phys. Chem. C 113, 20452 (2009).

    Article  CAS  Google Scholar 

  8. Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, and J. K. Lee, Curr. Appl. Phys. 6, 1030 (2006).

    Article  Google Scholar 

  9. N. Vitchuli, Q. Shi, J. Nowak, M. McCord, M. Bourham, and X. Zhang, J. Appl. Polym. Sci. 116, 2181 (2010).

    CAS  Google Scholar 

  10. H. Fong, W. Liu, C.-S. Wang, and R. A. Vaia, Polymer 43, 775 (2002).

    Article  CAS  Google Scholar 

  11. C. Carrizales, S. Pelfrey, R. Rincon, T. M. Eubanks, A. Kuang, M. J. McClure, G. L. Bowlin, and J. Macossay, Polym. Adv. Technol. 19, 124 (2008).

    Article  CAS  Google Scholar 

  12. H. Zhang, S. Li, C. J. Branford White, X. Ning, H. Nie, and L. Zhu, Electrochim. Acta 54, 5739 (2009).

    Article  CAS  Google Scholar 

  13. N. A. M. Barakat, M. A. Kanjwal, F. A. Sheikh, and H. Y. Kim, Polymer 50, 4389 (2009).

    Article  CAS  Google Scholar 

  14. H. R. Pant, W.-I. Baek, K.-T. Nam, I.-S. Jeong, N. A. M. Barakat, and H. Y. Kim, Polymer 52, 4851 (2011).

    Article  CAS  Google Scholar 

  15. A. Abdal-hay, H. R. Pant, and J. K. Lim, Eur. Polym. J. 49, 1314 (2013).

    Article  CAS  Google Scholar 

  16. L. Larrondo and R. St. J. Manley, J. Polym. Sci., Polym. Phys. Ed. 19, 909 (1981).

    Article  CAS  Google Scholar 

  17. R. Deng, Y. Liu, Y. Ding, P. Xie, L. Luo, and W. Yang, J. Appl. Polym. Sci. 114, 166 (2009).

    Article  CAS  Google Scholar 

  18. C. S. Kong, K. J. Jo, N. K. Jo, and H. S. Kim, Polym. Eng. Sci. 49, 391 (2009).

    Article  CAS  Google Scholar 

  19. J. Lyons, C. Li, and F. Ko, Polymer 45, 7597 (2004).

    Article  CAS  Google Scholar 

  20. P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Möller, Polymer 48, 6823 (2007).

    Article  CAS  Google Scholar 

  21. S. N. Malakhov, A. Yu. Khomenko, S. I. Belousov, A. M. Prazdnichnyi, S. N. Chvalun, A. D. Shepelev, and A. K. Budyka, Fibre Chem. 41, 355 (2009).

    Article  CAS  Google Scholar 

  22. S. N. Malakhov, S. I. Belousov, A. M. Prazdnichnyi, S. N. Chvalun, A. E. Negin, and A. D. Shepelev, Fibre Chem. 43, 417 (2012).

    Article  CAS  Google Scholar 

  23. RF Patent No. 82625 U1 (2009).

  24. Springer Materials. www.springermaterials. com/docs/athas.html 38, 1285 (2000).

  25. S.-Y. Kwak, J. H. Kim, S. Y. Kim, H. G. Jeong, and I. H. Kwon, J. Polym. Sci., Part B: Polym. Phys. 38, 1285 (2000).

    Article  CAS  Google Scholar 

  26. S. Murase, M. Kashima, K. Kudo, and M. Hirami, Macromol. Chem. Phys. 198, 561 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Malakhov.

Additional information

Original Russian Text © S.N. Malakhov, S.I. Belousov, M.A. Shcherbina, M.Yu. Meshchankina, S.N. Chvalun, A.D. Shepelev, 2016, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2016, Vol. 58, No. 2, pp. 169–178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, S.N., Belousov, S.I., Shcherbina, M.A. et al. Effect of low molecular additives on the electrospinning of nonwoven materials from a polyamide-6 melt. Polym. Sci. Ser. A 58, 236–245 (2016). https://doi.org/10.1134/S0965545X16020152

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16020152

Keywords

Navigation