Skip to main content
Log in

Electrospinning of Aqueous Solutions of a Triethylammonium Salt of Polyamic Acid and Properties of the Nonwoven Polyimide Materials

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The electrospinning conditions of aqueous and aqueous-alcoholic solutions of the triethylammonium salt of a polyamic acid derived from pyromellitic dianhydride and 4,4′-diaminodiphenyl ether in the concentration interval 8–15 wt % were studied comprehensively. The best operation characteristics of the nonwoven materials are reached when forming the fibers from a 10% solution of the prepolymer in a 70/30 wt % alcohol/water mixture at the reaction mixture viscosity in the interval 0.27–0.96 Pa s and the surface tension of 26 mN m−1. The dynamics of thermal imidization of the nonwoven material based on the triethylammonium salt polyamic acid was monitored by IR spectroscopy; it was found that the imide ring formation was complete at 200°C. Samples of the nonwoven polyimide material were obtained, and their deformation, strength, and thermal properties were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filatov, Yu.N., Elektroformovanie voloknistykh materialov. EFV-protsess (Electrospinning of Fibrous Materials. EFF Process), Kirichenko, V.N., Ed., Moscow: Neft’ i Gaz, 1997.

  2. Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S., Compos. Sci. Technol., 2003, vol. 63, no. 15, pp. 15–2223. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  3. Teo, W.E. and Ramakrishna, S., Nanotechnology, 2006, vol. 17, no. 14, pp. 14–89. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  Google Scholar 

  4. Bessonov, M.I., Koton, M.M., Kudryavtsev, V.V., and Laius, L.A., Poliimidy — klass termostoikikh polimerov (Polyimides: a Class of Heat-Resistant Polymers), Leningrad: Nauka, 1983.

    Google Scholar 

  5. Mittal, K.L., Polyimides: Synthesis, Characterization, and Applications, Springer, 2013, vol. 1, part 1, pp. 3–189.

  6. Dine-Hart, R. and Wright, W., J. Appl. Polym. Sci., 1967, vol. 11, no. 5, pp. 5–609. https://doi.org/10.1002/app.1967.070110501

    Article  Google Scholar 

  7. Miao, Y.-E., Zhu, G.-N., Hou, H., Xia, Y.-Y., and Liu, T., J. Power Sources, 2013, vol. 226, pp. 82–86. https://doi.org/10.1016/j.jpowsour.2012.10.027

    Article  CAS  Google Scholar 

  8. Bader, G., Swaidan, R., Litwiller, E., and Pinnau, I., Adv. Mater., 2014, vol. 26, no. 22, pp. 22–3688. https://doi.org/10.1002/adma.201306229

    Google Scholar 

  9. Peciulyte, L., Rutkaite, R., Zemaitaitis, A., Ignatova, M., Rashkov, I., and Manolova, N., Macromol. Res., 2013, vol. 21, no. 4, pp. 4–419. https://doi.org/10.1007/s13233-013-1032-7

    Article  Google Scholar 

  10. Yang, S.-Y., Advanced Polyimide Materials: Synthesis, Characterization, and Applications, ch. 2: Advanced Polyimide Fibers, Elsevier, 2018, pp. 67–92.

  11. Cai, D., Su, J., Huang, M., Liu, Y., Wang, J., and Dai, L., Polym. Degrad. Stab., 2011, vol. 96, no. 12, pp. 12–2174. https://doi.org/10.1016/j.polymdegradstab.2011.09.008

    Google Scholar 

  12. Zhang, Q.-H., Dai, M., Ding, M.-X., Chen, D.-J., and Gao, L.-X., Eur. Polym. J., 2004, vol. 40, no. 11, pp. 11–2487. https://doi.org/10.1016/j.eurpolymj.2004.06.020

    Article  Google Scholar 

  13. Xu, H., Jiang, S., Ding, C., Zhu, Y., Li, J., and Hou, H., Mater. Lett., 2017, vol. 201, no. 15, pp. 15–82. https://doi.org/10.1016/j.matlet.2017.05.019

    Google Scholar 

  14. Jirsak, O., Sysel, P., Sanetrnik, F., Hruza, J., and Chaloupek, J., J. Nanomater., 2010, article ID 842831. https://doi.org/10.1155/2010/842831

    Article  Google Scholar 

  15. Ding, Y., Bikson, B., and Nelson, J.K., Macromolecules, 2002, vol. 35, no. 12, pp. 12–912. https://doi.org/10.1021/ma011611u

    Google Scholar 

  16. Maekawa, Y., Miwa, T., Horie, K., and Yamashita, T., React. Funct. Polym., 1996, vol. 30, pp. 71–73. https://doi.org/10.1016/1381-5148(95)00129-8

    Article  CAS  Google Scholar 

  17. Clemenson, P.I., Pandiman, D., Pearson, J.T., and Lavery, A.J., Polym. Eng. Sci., 1997, vol. 37, no. 6, pp. 6–966. https://doi.org/10.1002/pen.11741

    Article  Google Scholar 

  18. Jiang, S., Hou, H., Agarwal, S., and Greiner, A., ACS Sustain. Chem. Eng., 2016, vol. 4, no. 9, pp. 9–4797. https://doi.org/10.1021/acssuschemeng.6b01031

    Article  Google Scholar 

  19. Ding, Y., Bikson, B., and Nelson, J.K., Macromolecules, 2002, vol. 35, no. 3, pp. 3–905. https://doi.org/10.1021/ma0116102

    Google Scholar 

  20. Koton, M.M., Kallistov, O.V, Kudryavtsev, V.V., Sklizkova, V.P., and Silinskaya, I.G., Vysokomol. Soedin., Ser. A, 1979, vol. 21, no. 3, pp. 3–532.

    Google Scholar 

  21. Liu, Y., He, J.H., Yu, J.Y., and Zeng, H.M., Polym. Int., 2008, vol. 57, no. 4, pp. 4–632. https://doi.org/10.1002/pi.2387

    Article  CAS  Google Scholar 

  22. Tan, S.H., Inai, R., Kotaki, M., and Ramakrishna, S., Polymer, 2005, vol. 46, no. 16, pp. 16–6128. https://doi.org/10.1016/j.polymer.2005.05.068

    Article  Google Scholar 

  23. Sampson, S.L., Saraiva, L., Gustafsson, K., Jayasinghe, S.N., and Robertson, B.D., Small, 2014, vol. 10, no. 1, pp. 1–78. https://doi.org/10.1002/smll.201300804

    Article  Google Scholar 

  24. Tamura, T. and Kawakami, H., Nano Lett., 2010, vol. 10, no. 4, pp. 4–1324. https://doi.org/10.1021/nl1007079

    Article  Google Scholar 

  25. Miao, Y.-E., Zhu, G.-N., Hou, H., Xia, Y.-Y., and Liu, T., J. Power Sources, 2013, vol. 226, pp. 82–86. https://doi.org/10.1016/j.jpowsour.2012.10.027

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 18-03-00568_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bugrov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Prikladnoi Khimii, 2020, Vol. 93, No. 1, pp. 43–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlichnyi, V.M., Vaganov, G.V., Myagkova, L.A. et al. Electrospinning of Aqueous Solutions of a Triethylammonium Salt of Polyamic Acid and Properties of the Nonwoven Polyimide Materials. Russ J Appl Chem 93, 35–44 (2020). https://doi.org/10.1134/S1070427220010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220010048

Keywords

Navigation