Skip to main content
Log in

Generalized Wigner Operators and Relativistic Gauge Fields

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We introduce and study the generalized Wigner operator. By definition, such an operator transforms the Wigner wave function into a local relativistic field corresponding to an irreducible representation of the Poincaré group by extended discrete transformations, with integer helicities \(\lambda \) and \( - \lambda \). It is shown that the relativistic fields constructed in this way are gauge potentials and satisfy the relations that determine free massless higher spin fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In an alternative formulation, which we will also use here, the representation is given on the Fourier components of such functions (see details in [11]).

  2. Some similar constructions for fields of half-integer helicities were considered in [12].

  3. The connection between the Poincaré group and its covering, as well as the choice of the test momentum for the stability subgroup and the definition of the Wigner operator in 2-dimensional spinor space, are presented in Appendix 1.

  4. See also [21] for analysis of massive representations.

  5. In [12, 16, 17] the irreducible representations were constructed using the additional spinor variables.

  6. From the point of view of the proper Poincare group, such representations are reducible. In the extended Poincare group, they become irreducible due to discrete transformations relating fields with helicity and .

  7. The description of massless gauge fields using distributions was considered, for example, in [8, 18].

REFERENCES

  1. E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Ann. Math. 40, 149 (1939).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. P. Wigner, “Relativistische Wellengleichungen,” Z. Phys. 124, 665 (1948).

    ADS  MathSciNet  MATH  Google Scholar 

  3. V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,” Proc. Nat. Acad. Sci. 34, 211 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. L. Fonda and G. C. Ghirardi, Symmetry Principles in Quantum Physics (Marcel Deccer, New York, 1970).

    Google Scholar 

  5. Yu. V. Novozhilov, Introduction to Elementary Particles Theory (Fiz.-Mat. Lit., Moscow, 1972; Pergamon, 2013).

  6. A. Barut and R. Rachka, Theory of Group Representations and Applications, Vol. 2 (WSPC, 1986; Mir, Moscow, 1980).

  7. Tung Wu-Ki, Theory Group (World Scientific, 1985).

    MATH  Google Scholar 

  8. X. Bekaert and E. D. Skvortsov, “Elementary particles with continuous spin,” Int. J. Mod. Phys. A 32, 1730019 (2017).

    Article  ADS  MATH  Google Scholar 

  9. N. Ya. Vilenkin, Special Functions and Theory of Group Representations (Nauka, Moscow, 1965; Am. Math. Soc., 1968)

  10. D. P. Zhelobenko and A. I. Shtern, Presentations of Li Groups (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  11. I. L. Bukhbinder, A. P. Isaev, M. A. Podoinitsyn, and S. A. Fedoruk, “Generalization of the Bargmann-Wigner construction for describing fields of infinite spin,” submitted to Teor. Mat. Fiz.

  12. V. G. Zima and S. A. Fedoruk, “Covariant quantization of d=4 Brink–Schwarz superparticle using Lorentz harmonics,” Teor. Mat. Fiz. 102, 420 (1995).

    Article  MathSciNet  Google Scholar 

  13. S. Weinberg, “Feynman rules for any spin,” Phys. Rev. B 133, 1318 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Weinberg, “Feynman rules for any spin. II. Massless particles,” Phys. Rev. B 134, 882 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace (IOP Publ., Bristol, 1998).

    MATH  Google Scholar 

  16. D. M. Gitman and A. L. Shelepin, “Fields on the Poincare group: arbitrary spin description and relativistic wave equations,” Int. J. Theor. Phys. 40, 603–684 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. L. Buchbinder, D. M. Gitman, and A. L. Shelepin, “Discrete symmetries as automorphisms of the proper Poincare group,” Int. J. Theor. Phys. 41, 753–790 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Bekaert and J. Mourad, “The continuous spin limit of higher spin field equations,” J. High Energy Phys. 0601, 115 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Schuster and N. Toro, “On the theory of continuous-spin particles: wavefunctions and soft-factor scattering amplitudes,” J. High Energy Phys. 09, 104 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. Schuster and N. Toro, “On the theory of continuous-spin particles: helicity correspondence in radiation and forces,” J. High Energy Phys. 09, 105 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. P. Isaev and M. A. Podoinitsyn, “Two-spinor description of massive particles and relativistic spin projection operators,” Nucl. Phys. B 929, 452 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of I.L.B. is supported by the Ministry of Education of the Russian Federation, project no. QZOY-2023-0003. The work of S.A.F. is supported by RSF grant no. 21-12-00129.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. L. Buchbinder, A. P. Isaev, M. A. Podoinitsyn or S. A. Fedoruk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

APPENDIX 1

1.1 COVERING OF THE \(4D\) LORENTZ GROUP. WIGNER OPERATORS

The relationship between the Lorentz group and its covering group \(SL(2,\mathbb{C})\) is formulated in the frame work of space \(\mathcal{H}\) of Hermitian \((2 \times 2)\) matrices. In this case the basis matrices are \({{\sigma }^{0}} = {{I}_{2}}\) and \({{\sigma }^{i}}\), \(i = 1,2,3\) are the \(\sigma \)-Pauli matrices. These matrices establish a one-to-one correspondence between the set of vectors in the space \({{x}_{\mu }} \in {{\mathbb{R}}^{{1,3}}}\) and the set \(\mathcal{H}\) of Hermitian matrices \(X = {{x}_{\mu }}{{\sigma }^{\mu }} \in \mathcal{H}\). The action of the group \(SL(2,\mathbb{C})\) on the set \(\mathcal{H}\)

$$X \to X{\kern 1pt} ' = AX{{A}^{\dag }}{\kern 1pt} ,\;\;\;X,X{\kern 1pt} ' \in \mathcal{H}{\kern 1pt} ,\;\;\;A \in SL(2,\mathbb{C})$$
(A.1)

leads to the group homomorphism \(SL(2,\mathbb{C}) \to S{{O}^{ \uparrow }}(1,3)\) represented in (2.2).

As a test 4-momentum of a massless particle, we take the vector \(\mathop p\limits^\circ {\kern 1pt} \in {{\mathbb{R}}^{{1,3}}}\), which has the following components

$$\left| {\left| {{{{\mathop p\limits^\circ }}_{\mu }}} \right|} \right| = ({{\mathop p\limits^\circ }_{0}},{{\mathop p\limits^\circ }_{1}},{{\mathop p\limits^\circ }_{2}},{{\mathop p\limits^\circ }_{3}}) = (E,0,0,E){\kern 1pt} .$$
(A.2)

The Wigner operator \({{A}_{{(p)}}} \in SL(2,\mathbb{C})\) is defined by the matrix equation

$${{A}_{{(p)}}}(\mathop p\limits^\circ {\kern 1pt} \sigma )A_{{(p)}}^{\dag } = (p{\kern 1pt} \sigma ){\kern 1pt} ,$$
(A.3)

where \((x\sigma ): = {{x}_{\mu }}{{\sigma }^{\mu }}\). The arbitrariness in the definition of Wigner operators is fixed by the equality \({{A}_{{(\mathop p\limits^\circ )}}} = {{I}_{2}}\). Relation (A.3) in vector representation has the form \(\Lambda _{\nu }^{\mu }({{A}_{{(p)}}}){\kern 1pt} {{\mathop p\limits^\circ }_{\mu }} = {{p}_{\nu }}\). The matrices \(h \in SL(2,\mathbb{C})\) from the stability subgroup \({{G}_{{\mathop p\limits^\circ }}}\) preserve the test momentum,

$$h\;(\mathop p\limits^\circ \sigma )\;{{h}^{\dag }} = (\mathop p\limits^\circ {\kern 1pt} \sigma ){\kern 1pt} .$$
(A.4)

In the case of an isotropic 4-momentum (A.2), the elements \(h \in {{G}_{{\mathop p\limits^\circ }}} \simeq ISO(2)\) have the form

$$h = \left( {\begin{array}{*{20}{c}} 1&{{{b}_{1}} + i{{b}_{2}}} \\ 0&1 \end{array}} \right){\kern 1pt} \left( {\begin{array}{*{20}{c}} {{{e}^{{\frac{i}{2}\theta }}}}&0 \\ 0&{{{e}^{{ - \frac{i}{2}\theta }}}} \end{array}} \right){\kern 1pt} ;$$
(A.5)

i.e., the matrix \(h\) depends on three parameters \(\theta \in [0,2\pi ]\) and \(\vec {b} = ({{b}_{1}},{{b}_{2}}) \in {{\mathbb{R}}^{2}}\).

The Wigner operator \({{A}_{{(p)}}}\) is defined up to right multiplication by an element from the stability subgroup \({{G}_{{\mathop p\limits^\circ }}}\) and thus parameterizes the coset space \(SL(2,\mathbb{C})/{{G}_{{\mathop p\limits^\circ }}}\). The relation \(A{\kern 1pt} {{A}_{{(p)}}} = {{A}_{{(\Lambda p)}}}{\kern 1pt} {{h}_{{A,p}}}\) defining the action of the element \(A \in SL(2,\mathbb{C})\) on the coset space \(SL(2,\mathbb{C})/{{G}_{{\mathop p\limits^\circ }}}\) parameterized by the Wigner operator leads to two consequences

$${{h}_{{A,p}}} = A_{{(\Lambda p)}}^{{ - 1}}{\kern 1pt} A{\kern 1pt} {{A}_{{(p)}}}\;\;\;\; \Rightarrow \;\;\;\;{{h}_{{A,{{\Lambda }^{{ - 1}}}p}}} = A_{{(p)}}^{{ - 1}}{\kern 1pt} A{\kern 1pt} {{A}_{{({{\Lambda }^{{ - 1}}}p)}}}{\kern 1pt} ,$$
(A.6)

where the indices at \({{h}_{{A,p}}}\) indicate that the element of the test momentum stability subgroup depends on \(A \in SL(2,\mathbb{C})\) and the 4-momentum \(p\).

The parameters that correspond to the stability subgroup element \({{h}_{{A,p}}}\) specified in (A.6) are denoted by \({{\theta }_{{A,p}}}\) and \({{\vec {b}}_{{A,p}}}\) and are determined from the relation

$${{h}_{{A,p}}} = A_{{(\Lambda p)}}^{{ - 1}}{\kern 1pt} A{\kern 1pt} {{A}_{{(p)}}} = \left( {\begin{array}{*{20}{c}} 1&{{{{\mathbf{b}}}_{{A,p}}}} \\ 0&1 \end{array}} \right){\kern 1pt} \left( {\begin{array}{*{20}{c}} {{{e}^{{\frac{i}{2}{{\theta }_{{A,p}}}}}}}&0 \\ 0&{{{e}^{{ - \frac{i}{2}{{\theta }_{{A,p}}}}}}} \end{array}} \right){\kern 1pt} ,$$
(A.7)

where \({{{\mathbf{b}}}_{{A,p}}} = ({{b}_{{A,p}}}{{)}_{1}} + i{{({{b}_{{A,p}}})}_{2}}\). The parameters \({{\theta }_{{A,{{\Lambda }^{{ - 1}}}p}}}\) and \({{\vec {b}}_{{A,{{\Lambda }^{{ - 1}}}p}}}\) corresponding to the second relation from (A.6), are determined from \({{\theta }_{{A,p}}}\) and \({{\vec {b}}_{{A,p}}}\) by the substitution: \(p \to \Lambda {{(A)}^{{ - 1}}}p\). Taking into account (A.6), the condition \({{A}_{{(\mathop p\limits^\circ )}}} = {{I}_{2}}\) leads to the equalities:

$${{\theta }_{{{{A}_{{(p)}}},\mathop p\limits^\circ }}} = 0{\kern 1pt} ,\;\;\;{{\vec {b}}_{{{{A}_{{(p)}}},\mathop p\limits^\circ }}} = 0{\kern 1pt} .$$
(A.8)

APPENDIX 2

1.1 PAULI–LUBANSKI PSEUDOVECTOR FOR FIELDS WITH AN ADDITIONAL VECTOR VARIABLE

The Poincaré group generators \({{\hat {P}}_{\nu }}\), \({{\hat {M}}_{{\nu \mu }}}\), acting in the field space \(\Psi (p,\eta )\), have the form

$$\begin{gathered} {{{\hat {P}}}_{\mu }} = {{p}_{\mu }}{\kern 1pt} , \\ {{{\hat {M}}}_{{\mu \nu }}} = i\left( {{{p}_{\mu }}\frac{\partial }{{\partial {{p}^{\nu }}}} - {{p}_{\nu }}\frac{\partial }{{\partial {{p}^{\mu }}}} + {{\eta }_{\mu }}\frac{\partial }{{\partial {{\eta }^{\nu }}}} - {{\eta }_{\nu }}\frac{\partial }{{\partial {{\eta }^{\mu }}}}} \right){\kern 1pt} . \\ \end{gathered} $$
(B.1)

The Pauli–Lubanski pseudovector in the reference frame of a test momentum is defined as follows:

$${{\mathop W\limits^\circ }_{\mu }} = \frac{1}{2}{{\varepsilon }_{{\mu \nu \lambda \boldsymbol{\rho} }}}{{\hat {M}}^{{\lambda \boldsymbol{\rho} }}}\mathop {{{p}^{\nu }}}\limits^\circ i{{\varepsilon }_{{\mu \nu \lambda \boldsymbol{\rho} }}}\mathop {{{p}^{\nu }}}\limits^\circ {{\eta }^{\lambda }}\frac{\partial }{{\partial {{\eta }_{\boldsymbol{\rho} }}}}{\kern 1pt} .$$
(B.2)

Its components have the following form:

$$\begin{gathered} {{\mathop W\limits^\circ }_{0}} = {{\mathop W\limits^\circ }_{3}} = E\left( {\zeta \frac{\partial }{{\partial \zeta }} - \bar {\zeta }\frac{\partial }{{\partial \bar {\zeta }}}} \right){\kern 1pt} , \\ {{\mathop W\limits^\circ }_{{( + )}}} = - \frac{1}{2}\left( {{{{\mathop W\limits^\circ }}_{1}} + i{{{\mathop W\limits^\circ }}_{2}}} \right) = E\left( {{{\eta }^{ + }}\frac{\partial }{{\partial \zeta }} + \bar {\zeta }\frac{\partial }{{\partial {{\eta }^{ - }}}}} \right){\kern 1pt} , \\ {{\mathop W\limits^\circ }_{{( - )}}} = - \frac{1}{2}\left( {{{{\mathop W\limits^\circ }}_{1}} - i{{{\mathop W\limits^\circ }}_{2}}} \right) = E\left( {{{\eta }^{ + }}\frac{\partial }{{\partial \bar {\zeta }}} + \zeta \frac{\partial }{{\partial {{\eta }^{ - }}}}} \right){\kern 1pt} , \\ \end{gathered} $$
(B.3)

where the variables defined in (4.4) are used. It can be shown that in an arbitrary reference frame the components of the Pauli-Lubanski vector are given by the expressions:

$$\begin{array}{*{20}{c}} {{{W}_{0}}\, = \, - \frac{1}{2}{\kern 1pt} \left[ {({{\varepsilon }_{{( + )}}}\eta )\left( {{{\varepsilon }_{{( - )}}}\frac{\partial }{{\partial \eta }}} \right)\, - \,({{\varepsilon }_{{( - )}}}\eta )\left( {{{\varepsilon }_{{( + )}}}\frac{\partial }{{\partial \eta }}} \right)} \right]\, = \,{{W}_{3}}{\kern 1pt} ,} \\ {{{W}_{{( \pm )}}} = \left( {({{\varepsilon }_{{( \mp )}}}\eta )\left( {p\frac{\partial }{{\partial \eta }}} \right) - (p\eta )({{\varepsilon }_{{( \mp )}}}\frac{\partial }{{\partial \eta }})} \right).} \end{array}$$
(B.4)

APPENDIX 3

1.1 POLARIZATION VECTORS

Here we give expressions for the 4-polarization vectors used in the paper.

In the standard momentum frame, the 4-polarization vectors that are orthogonal to each other and to the massless test momentum \(\mathop p\limits^\circ {\kern 1pt} \), have components

$${{({{\mathop \varepsilon \limits^\circ }_{{(1)}}})}_{\nu }} = (0,1,0,0){\kern 1pt} ,\quad {{({{\mathop \varepsilon \limits^\circ }_{{(2)}}})}_{\nu }} = (0,0,1,0){\kern 1pt} .$$
(C.1)

In an arbitrary basis, they are denoted by

$$\begin{array}{*{20}{c}} {{{\varepsilon }_{{(1)}}}: = \Lambda ({{A}_{{(p)}}}){\kern 1pt} {{{\mathop \varepsilon \limits^\circ }}_{{(1)}}}{\kern 1pt} ,\;\;\;{{\varepsilon }_{{(2)}}}: = \Lambda ({{A}_{{(p)}}}){\kern 1pt} {{{\mathop \varepsilon \limits^\circ }}_{{(2)}}}{\kern 1pt} .} \end{array}$$
(C.2)

The following linear combinations of vectors (C.2) are also used:

$${{\varepsilon }_{{( \pm )}}}: = {{\varepsilon }_{{(2)}}} \pm i{{\varepsilon }_{{(1)}}}{\kern 1pt} ,$$
(C.3)

which, by construction, satisfy the equations

$$p{{\varepsilon }_{{( \pm )}}} = 0,\quad {{\varepsilon }_{{( \pm )}}}{{\varepsilon }_{{( \pm )}}} = 0{\kern 1pt} ,\quad {{\varepsilon }_{{( + )}}}{{\varepsilon }_{{( - )}}} = - 2{\kern 1pt} .$$
(C.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, I.L., Isaev, A.P., Podoinitsyn, M.A. et al. Generalized Wigner Operators and Relativistic Gauge Fields. Phys. Part. Nuclei Lett. 20, 605–612 (2023). https://doi.org/10.1134/S1547477123040167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123040167

Keywords:

Navigation