Skip to main content
Log in

Covariant quantization of thed=4 Brink-Schwarz superparticle using Lorentz harmonics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Covariant first and second quantizations of the freed=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of masslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with the correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that the harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Brink and J. H. Schwarz,Phys. Lett. B,100, 310 (1981).

    Google Scholar 

  2. Y. Eizenberg and S. Solomin,Nucl. Phys. B,309, 709 (1988);Phys. Lett. B,220, 562 (1989).

    Google Scholar 

  3. A. Ferber,Nucl. Phys. B,132, 55 (1978).

    Google Scholar 

  4. Y. Eisenberg,Phys. Lett. B,276, 325 (1992).

    Google Scholar 

  5. N. Berkovits,Nucl. Phys. B,350, 193 (1991).

    Google Scholar 

  6. E. Sokatchev,Phys. Lett. B,169, 209 (1986);Class. Quant. Grav., 237 (1987).

    Google Scholar 

  7. A. S. Galperin, P. S. Howe, and K. S. Stelle,Nucl. Phys. B,368, 248 (1992).

    Google Scholar 

  8. A. S. Galperin, P. S. Howe, and P. K. Townsend,Nucl. Phys. B,402, 531 (1993).

    Google Scholar 

  9. I. A. Bandos,Yad. Fiz.,51, 1429 (1990).

    Google Scholar 

  10. I. A. Bandos and A. A. Zheltukhin,Fortschr. Phys.,41, 619 (1993).

    Google Scholar 

  11. E. Nissimov, S. Pacheva, and S. Solomon,Nucl. Phys. B,296, 462 (1988);317, 344 (1989).

    Google Scholar 

  12. R. E. Kallosh and M. A. Rachmanov,Phys. Lett. B,214, 549 (1988).

    Google Scholar 

  13. I. A. Bandos,Pis'ma Zh. Eksp. Teor. Fiz.,52, 837 (1990).

    Google Scholar 

  14. R. Penrose,J. Math. Phys.,8, 345 (1967).

    Google Scholar 

  15. R. Penrose and M. A. MacCallum,Phys. Rep. C,6, 241 (1972).

    Google Scholar 

  16. M. Bacry and A. K. Kihlberg,J. Math. Phys.,10, 2132 (1969).

    Google Scholar 

  17. S. Weinberg,Phys. Rev. B,134, 882 (1964).

    Google Scholar 

  18. I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin,Generalized Functions, Vol. 5.Integral Geometry and Representation Theory, Academic Press, New York (1966).

    Google Scholar 

  19. E. S. Fradkin and G. A. Vilkovisky,Phys. Lett. B,55, 224 (1975).

    Google Scholar 

  20. I. A. Batalin and G. A. Vilkovisky,Phys. Lett. B,69, 309 (1977).

    Google Scholar 

  21. E. S. Fradkin and T. E. Fradkina,Phys. Lett. B,72, 343 (1978).

    Google Scholar 

  22. A. Salam and J. Strathdee,Ann. Phys. (N.Y.),141, 316 (1982).

    Google Scholar 

  23. J. A. Shapiro and C. C. Taylor,Phys. Rep.,191, 221 (1990).

    Google Scholar 

  24. S. J. Gates, K. S. Stelle, and P. S. West,Nucl. Phys. B,169, 347 (1980).

    Google Scholar 

  25. I. A. Bandos and V. G. Zima,Teor. Mat. Fiz.,70, 76 (1987).

    Google Scholar 

  26. I. V. Frolov,Yad. Fiz.,36, 1014 (1982).

    Google Scholar 

  27. V. I. Ogievetskii and É. S. Sokachev,Yad. Fiz.,32, 1142 (1980).

    Google Scholar 

  28. M. B. Menskii,Teor. Mat. Fiz.,18, 190 (1974); G. A. Vilkovyskii,Teor. Mat. Fiz.,8, 359 (1971);16, 90 (1973); A. G. Nikitin,Teor. Mat. Fiz.,57, 257 (1983).

    Google Scholar 

  29. N. V. Borisov and B. P. Kulish,Teor. Mat. Fiz.,51, 335 (1982); A. A. Zheltukhin,Teor. Mat. Fiz.,65, 151 (1985).

    Google Scholar 

  30. D. V. Volkov and A. I. Pashnev,Teor. Mat. Fiz.,44, 321 (1980).

    Google Scholar 

  31. A. I. Oksak and I. T. Todorov,Teor. Mat. Fiz.,7, 153 (1971).

    Google Scholar 

  32. V. V. Nesterenko,Teor. Mat. Fiz.,86, 244 (1991).

    Google Scholar 

  33. J. Wess and J. Bagger,Supersymmetry and Supergravity, Princeton (1983).

  34. P. A. M. Dirac,Lectures on Quantum Mechanics, Belfer Graduate School of Science Monographs Series No. 2, Yeshiva University, New York (1964).

    Google Scholar 

  35. W. Siegel,Phys. Lett. B,128, 397 (1983).

    Google Scholar 

  36. N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov,General Principles of Quantum Field Theory [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  37. G. J. Iverson and G. Mack,Ann. Phys. (N.Y.),64, 211 (1971).

    Google Scholar 

  38. A. Érdelyi et al. (eds.),Higher Transcendental Functions, (California Institute of Technology H. Bateman M.S. Project), Vol. 1, McGraw Hill, New York (1953).

    Google Scholar 

Download references

Authors

Additional information

State University, Kharkov. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 102, No. 3, pp. 420–445, March, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zima, V.G., Fedoryuk, S.A. Covariant quantization of thed=4 Brink-Schwarz superparticle using Lorentz harmonics. Theor Math Phys 102, 305–322 (1995). https://doi.org/10.1007/BF01017881

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017881

Keywords

Navigation