Skip to main content
Log in

U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In the framework of the interacting boson model (IBM) with intrinsic coherent state, the shape Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) are examined. The Hamiltonian used is composed of a single boson energy term and quadrupole term. The potential energy surfaces (PES’ s) corresponding to the U(5)-SU(3) transition are calculated with variation of a scaling and control parameters. The model is applied to 150–162Dy chain of isotopes. In this chain a change from spherical to well deformed nuclei is observed when moving from the lighter to heavier isotopes. 156Dy is a good candidate for the critical point symmetry X(5). The parameters of the model are determined by using a computer simulated search program in order to minimize the deviation between our calculated and some selected experimental energy levels, B(E2) transition rates and the two neutron separation energies S2n. We have also studied the energy ratios and the B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between ground-ground and ground-beta states are examined within IBM and boson intrinsic coherent framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello and A. Arima, The Interacting Boson Model (Cambridge Univ. Press, Cambridge, UK, 1987).

    Book  Google Scholar 

  2. Interacting Bose-Fermi Systems, Ed. by R. F. Casten and F. Iachello (Plenum, New York, 1981).

  3. D. Warner, Nature 420, 614–620 (2002).

    Article  ADS  Google Scholar 

  4. A. M. Khalaf, N. Gaballah, M. F. Elgabry, and H. A. Ghanim, Prog. Phys. 11, 141–145 (2015).

    Google Scholar 

  5. A. M. Khalaf and M. M. Taha, J. Theor. Appl. Phys. 9, 127–133 (2015).

    Article  ADS  Google Scholar 

  6. A. M. Khalaf and M. D. Okasha, Prog. Phys. 10, 246–252 (2014).

    Google Scholar 

  7. A. M. Khalaf, H. S. Hamdy, and M. M. Elsawy, Prog. Phys. 3, 44–51 (2013).

    Google Scholar 

  8. A. M. Khalaf and A. M. Ismail, Prog. Phys. 2, 98–104 (2013).

    Google Scholar 

  9. A. M. Khalaf and T. M. Awwad, Prog. Phys. 1, 7–11 (2013).

    Google Scholar 

  10. R. F. Casten, Prog. Part. Nucl. Phys. 62, 183–209 (2009).

    Article  ADS  Google Scholar 

  11. J. Barea, J. M. Arias, and J. E. Garcia-Ramos, Phys. Rev. C 82, 024316 (2010).

  12. P. Cejnar and J. Jolic, Prog. Part. Nucl. Phys. 62, 210–256 (2009).

    Article  ADS  Google Scholar 

  13. M. A. Caprio and F. Iachello, Nucl. Phys. A 781, 26–66 (2007).

    Article  ADS  Google Scholar 

  14. T. Niksic, D. Vretenar, G. A. Lalazissis, and P. Ring, Phys. Rev. Lett. 99, 092502 (2007).

    Article  ADS  Google Scholar 

  15. C. E. Alonso, J. M. Arias, and A. Vitturi, Phys. Rev. Lett. 98, 052501 (2007).

    Article  ADS  Google Scholar 

  16. Y. Zhang, Z. F. Hau, and Y. X. Liu, Phys. Rev. C 76, 011305(R) (2007).

    Article  ADS  Google Scholar 

  17. A. Leviatan, Phys. Rev. Lett. 98, 242502 (2007).

    Article  ADS  Google Scholar 

  18. Y. Zhao, Y. Liu, L. Z. Mu, and Y. X. Liu, Int. J. Mod. Phys. E 15, 1711 (2006).

    Article  ADS  Google Scholar 

  19. R. F. Casten, Nature Phys. 2, 811–820 (2006).

    Article  ADS  Google Scholar 

  20. Y. X. Liu, L. Z. Mu, and H. Q. Wei, Phys. Lett. B 633, 49 (2006).

    Article  ADS  Google Scholar 

  21. J. Meng, W. Zhang, S. G. Zhou, H. Toki, and L. S. Geng, Eur. Phys. J. A 25, 23 (2005).

    Article  Google Scholar 

  22. D. J. Rowe, P. S. Tunner, and G. Rosensteel, Phys. Rev. Lett. 93, 232502 (2004).

    Article  ADS  Google Scholar 

  23. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.

    MATH  Google Scholar 

  24. J. N. Ginocchio, Nucl. Phys. A 376, 438 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).

    Article  ADS  Google Scholar 

  26. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

    Article  ADS  Google Scholar 

  27. F. Iachello, Phys. Rev. Lett. 91, 132502 (2003).

    Article  ADS  Google Scholar 

  28. D. Bonatsos, D. Lenis, D. Petrellis, and P. A. Terziev, Phys. Lett. B 588, 172 (2004).

    Article  ADS  Google Scholar 

  29. A. E. L. Dieprink, O. Scholten, and F. Iachello, Phys. Rev. Lett. 44, 1747 (1980).

    Article  ADS  Google Scholar 

  30. National Nuclear Data Center, Data (Brookhaven Natl. Labor., Upton, NY, USA, 2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kotb.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotb, M. U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes. Phys. Part. Nuclei Lett. 13, 451–459 (2016). https://doi.org/10.1134/S1547477116040075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116040075

Navigation