Skip to main content
Log in

Scaling laws and memory effects in the dynamics of liquids and proteins

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Recent progress in the numerical calculation of memory functions from molecular dynamics simulations allowed the gaining of deeper insight into the relaxation dynamics of liquids and proteins. The concept of memory functions goes back to the work of R. Zwanzig on the generalized Langevin equation, and it was the basis for the development of various dynamical models for liquids. In this article we present briefly a method for the numerical calculation of memory functions, which is then applied to study their scaling behavior in normal and fractional Brownian dynamics. It has been shown recently that the model of fractional Brownian dynamics constitutes effectively a link between protein dynamics on the nanosecond time scale, which is accessible to molecular dynamics simulations and thermal neutron scattering, and the much longer time scale of functional protein dynamics, which can be studied by fluorescence correlation spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rahman, Phys. Rev. 136(2A), 405–411 (1964).

    Article  ADS  Google Scholar 

  2. G. Ciccotti, D. Frenkel, and I. R. McDonald, Simulation of Liquids and Solids (North-Holland, Amsterdam, 1987).

    Google Scholar 

  3. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ., Oxford, 1987).

    MATH  Google Scholar 

  4. D. Frenkel and B. Smith, Understanding Molecular Simulation (Academic, London, San Diego, 1996).

    MATH  Google Scholar 

  5. R. Zwanzig, Statistical Mechanics of Irreversibility, Lectures in Theor. Phys. (Wiley, New York, 1961), pp. 106–141.

    Google Scholar 

  6. G. R. Kneller and K. Hinsen, J. Chem. Phys. 115(24), 11097–11105 (2001).

    Article  ADS  Google Scholar 

  7. J. Burg, “Maximum Entropy Spectral Analysis,” PhD Thesis (Stanford Univ., Stanford, CA, USA, 1975).

    Google Scholar 

  8. A. Papoulis, Probablity, Random Variables, and Stochastic Processes, 3rd ed. (McGraw Hill, 1991).

  9. G. R. Kneller, K. Hinsen, and G. Sutmann, J. Chem. Phys. 118(12), 5283–5286 (2003).

    Article  ADS  Google Scholar 

  10. P. Espanol and I. Zuniga, J. Chem. Phys. 98(1), 574–580 (1992).

    Article  ADS  Google Scholar 

  11. G. R. Kneller and G. Sutmann, J. Chem. Phys. 120(4), 1667–1669 (2004).

    Article  ADS  Google Scholar 

  12. W. G. Glöckle and T.F. Nonnenmacher, Biophys. J. 68, 46–53 (1995).

    Article  ADS  Google Scholar 

  13. H. Yang and X. S. Xie, J. Chem. Phys. 117(24), 10965–10979 (2002).

    Article  ADS  Google Scholar 

  14. H. Yang, G. Luo, P. Karnchanaphanurach, et al., Science 302(5643), 262–266 (2003).

    Article  ADS  Google Scholar 

  15. S. C. Kou and X. S. Xie, Phys. Rev. Lett. 93, 180603 (2004).

    Google Scholar 

  16. G. R. Kneller and K. Hinsen, J. Chem. Phys. 121(20), 10278–10283 (2004).

    Article  ADS  Google Scholar 

  17. G. R. Kneller, Phys. Chem. 7, 2641–2655 (2005).

    Article  Google Scholar 

  18. R. Metzler and J. Klafter, Phys. Rev. E 61(6), 6308–6311 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw Hill, 1955).

  20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972).

    MATH  Google Scholar 

  21. G. R. Kneller and V. Calandrini, Manuscript submitted.

  22. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 9, 6269–6270 (1987).

    Article  Google Scholar 

  23. W. Smith, C. W. Yong, and P. M. Rodger, Molecular Simulation 28(1), 385–471 (2002).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Kneller.

Additional information

The text was submitted by the authors in English.

Affiliated with the University of Orléans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kneller, G.R., Hinsen, K., Sutmann, G. et al. Scaling laws and memory effects in the dynamics of liquids and proteins. Phys. Part. Nuclei Lett. 5, 189–195 (2008). https://doi.org/10.1134/S1547477108030114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477108030114

PACS numbers

Navigation