Skip to main content
Log in

A polymer-salt composite for replacement of bone defects

  • Proceedings of the Topical Meeting of the European Ceramic Society “Structural Chemistry of Partially Ordered Systems, Nanoparticles, and Nanocomposites” (St. Petersburg, Russia, June 27–29, 2006)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2007

Abstract

Hydroxyapatite-collagen and fluorohydroxyapatite-collagen composite materials are synthesized using directed diffusion of ions from solutions on collagen fibers. Computer tomography indicates that the salt component is rather uniformly distributed over the organic matrix. According to the electron microscopic data, the composite materials involve salt nanocrystals (less than 1 μm in size), which are uniformly distributed between collagen fibers. The chemical analysis has revealed that fluorohydroxyapatite with the stoichiometric ratio Ca/P = 1.67 is formed only in the case where the content of fluoride ions in the system amounts to 0.1 mol/l. The clinical trials have demonstrated that the presence of fluoride ions in the apatite structure suppresses osteoclasts and provides a combined more positive clinical effect as compared to other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tret’yakov, Yu.D., Development of Chemistry as a Fundamental Basis for the Design of Functional Materials of New Generations, Usp. Khim., 2004, vol. 73, no. 9, pp. 899–915.

    CAS  Google Scholar 

  2. Strates, B. and Neuman, W.F., On the Mechanisms of Calcification, Proc. Soc. Exp. Biol. Med., 1958, vol. 97, no. 3, pp. 688–691.

    CAS  Google Scholar 

  3. Newman, W. and Newman, M., The Chemical Dynamics of Bone Mineral, Chicago: Chicago University Press, 1958. Translated under the title Mineral’nyi obmen kosti, Moscow: Inostrannaya Literatura, 1961.

    Google Scholar 

  4. Lee, E.-J., Lee, S.-H., Kim, H-W., Kong, Y.-M., and Kim, H.-E., Fluoridated Apatite Coatings on Titanium Obtained by Electron-Beam Deposition, Biomaterials, 2005, vol. 26, pp. 3843–3851.

    Article  CAS  Google Scholar 

  5. Verdiev, A.G. and Ibragimov, F.I., Conditions of the Musculoskeletal System in Fluorosis, Ortop. Travmatol. Protez., 2000, no. 4, pp. 126–130.

  6. Franke, J. and Runge, H., Osteoporose-Diagnose, Differentialdiagnose und Therapie unter Beücksichtigung der Natriumfluoridbehandlung, Berlin: Volk und Gesundheit, 1987. Translated under the title Osteoporoz, Moscow: Meditsina, 1995.

    Google Scholar 

  7. WHO Expert Committee Report on Fluorides and Oral Health, Stomatologiya, 1995, no. 5, pp. 30–41.

  8. Litvinov, S.D., Biological and Clinical Study Kinetics of Biodegrading Apatite-Collagen Implant for Substituting Bone Tissue Defects, Eur. J. Drug Metab. Pharmacokineti., 1998, vol. 28, no. 2, pp. 346–349.

    Article  Google Scholar 

  9. Ershov, Yu.A., Litvinov, S.D., Tsarev, E.R., Boiko, V.I., and Ershov, E.A., A Technique for Forming Bone Tissues, RF Patent 2 053 733, 1996.

  10. Charlot, G., Les methodes de la Chimie Analytique: Analyse Quantitative et Minerale, Paris: Masson, 1966. Translated under the title Metody analiticheskoi khimii: kolichestvennyi analiz neorganicheskikh soedinenii, Moscow: Khimiya, 1969.

    Google Scholar 

  11. Fiziko-khimicheskie metody analiza. Prakticheskoe rukovodstvo (Practical Guide on Physicochemical Methods for Analysis), Aleskovskii, V.B., Ed., Leningrad: Khimiya, 1988 [in Russian].

    Google Scholar 

  12. Litvinov, S.D., Krasnov, A.F., and Ershov, Yu.A., Specific Features of Regeneration of Bone Tissue after Replacing Its Defects by Synthetic Implant, Byull. Eksp. Biol. Med., 1995, no. 4, pp. 435–438.

  13. Litvinov, S.D., Seryogin, A.S., Bulanov, S.I., Demidov, V.Ya., and Berejnov, V.V., The Computed Tomography Control of Collagen-Apatite Implant Biotransformation in the Low Jaw, Calcif. Tissue Int., 2000, vol. 65,Suppl. 1, p. 126.

    Google Scholar 

  14. Sudakova, T.V., Hydroxo Salts of Biogenic Elements: Synthesis, Properties, and Applications, Extended Abstracts of the Candidate Sci. Dissertation, Samara, 2004 [in Russian].

  15. Atlas IK spektrov fosfatov: Ortofosfaty (Atlas of IR Spectra of Phosphates: Orthophosphates), Pechkovskii, V.V., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  16. http://www.curasan-online.de/de/ueber_uns/Produkte/cerasorb.php

  17. Park, J.B. and Lakes, R.S., Biomaterials: An Introduction, New York: Plenum, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Litvinov.

Additional information

Original Russian Text © S.D. Litvinov, T.V. Sudakova, 2007, published in Fizika i Khimiya Stekla.

An erratum to this article is available at http://dx.doi.org/10.1134/S1087659607050185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinov, S.D., Sudakova, T.V. A polymer-salt composite for replacement of bone defects. Glass Phys Chem 33, 432–437 (2007). https://doi.org/10.1134/S1087659607040207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659607040207

Keywords

Navigation