Skip to main content
Log in

Compositional Evolution of REE- and Ti-Bearing Accessory Minerals in Metamorphic Schists of Atomfjella Series, Western Ny Friesland, Svalbard and Its Petrogenetic Significance

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—Accessory REE- and Ti-bearing minerals have been investigated in rocks of the northern part of the West Ny Friesland anticlinorium, Svalbard Archipelago. The anticlinorium is formed by Paleoproterozoic and Early Riphean metamorphic complexes overlain with an angular unconformity by Late Riphean–Early Paleozoic metasedimentary sequences of the ancient platform cover. Representative samples of metapelites with the assemblage Ms–Bt–Grt–Qz–Pl and calcic pelitic schists with additional calcite and clinozoisite were studied. Special attention was paid to the microstructure of accessory minerals aggregates and its rock-forming interpretation. Several accessory assemblages were delineated, corresponding to distinct “time slices” of the metamorphic history. The earlier assemblage consists of REE-bearing minerals: monazite-(Ce) and REE-rich clinozoisite and epidote overgrown on detrital (?) allanite-(Ce). These minerals appeared before garnet porphyroblast nucleation (<530–540°C, <5.5–7.5 kbar) and at the initial stages of its growth. Clinozoisite rims on allanite-(Ce) grains were formed during the same time as evidenced by zoned crystals of clinozoisite with allanite cores, which is preserved as inclusions within garnet. In the late stages of porphyroblast growth, rutile stabilized and the Fe–Ti oxide assemblage with rutile and metastable ilmenite originated due to attainment of maximum temperature and pressure (670–690°С, 10–11 kbar). During the retrograde metamorphic stage at 450–470°C and 3–5 kbar, rutile and ilmenite were replaced by titanite associated with late chlorite. The conditions and mechanisms of phase reactions controlling accessory mineral formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. The article uses mineral notation of (Kretz, 1983).

  2. The term “calcic pelitic schists,” after (Menard and Spear, 1992), is used for metapelitic rocks enriched in CaO, which include carbonates and minerals of the epidote group.

REFERENCES

  1. Airaghi, L., Janots, E., Lanari, P., de Sigoyer, J., and Magnin, V., Allanite petrochronology in fresh and retrogressed garnet-biotite metapelites from the Longmen Shan (Eastern Tibet), J. Petrol., 2019, vol. 60, pp. 151–176.

    Article  Google Scholar 

  2. Al-Ani, T., Hölttä, P., Grönholm, S., Pakkanen, L., and Al-Ansari, N., Crystal chemistry and geochronology of thorium-rich monazite from Kovela granitic complex, Southern Finland, Natural Res., 2019, vol. 10, pp. 230–269.

    Article  Google Scholar 

  3. Armbruster, T. and Bonazzi, P., Akasaka M., Bermanec V., Chopin C., Gieré R., Heuss-Assbichler S., Liebscher A., Menchetti S., Pan Yu., and Pasero, M., Recommended nomenclature of epidote-group minerals, Eur. J. Mineral., 2006, vol. 18, pp. 551–567.

    Article  Google Scholar 

  4. Baldwin, J.A., Powell, R., Brown, M., Moraes, R., and Fuck, R.A., Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis-Itauçu Complex, central Brazil, J. Metamorph. Geol., 2005, vol. 23, pp. 511–523.

    Article  Google Scholar 

  5. Bohlen, S.R., Wall, V.J., and Boettcher, A.L., Experimental investigations and geological applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O, Am. Mineral., 1984, vol. 68, pp. 1049–1058.

    Google Scholar 

  6. Bohlen, S.R. and Liotta, J.J., A barometer for garnet amphibolites and garnet granulites, J. Petrol., 1986, vol. 27, pp. 1025–1034.

    Article  Google Scholar 

  7. De Capitani, C. and Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 2010, vol. 95, pp. 1006–1016.

    Article  Google Scholar 

  8. Catlos, E.J., Sorensen, S.S., and Harrison, T.M., Th–Pb ion-microprobe dating of allanite, Am. Mineral., 2000, vol. 85, pp. 633–648.

    Article  Google Scholar 

  9. Coggon, R. and Holland, T.J.B., Mixing properties of phengitic micas and revised garnet-phengite thermobarometers, J. Metamorph. Geol., 2002, vol. 20, pp. 683–696.

    Article  Google Scholar 

  10. Ercit, T.S., The mess that is “allanite”, Can. Mineral., 2002, vol. 40, pp. 1411–1419.

    Article  Google Scholar 

  11. Fraser, G.L., Pattison, D.R.M., and Heaman, L.M., Age of the Ballachulish and Glencoe igneous complexes (Scottish highlands), and paragenesis of zircon, monazite and baddeleyite in the ballachulish aureole, J. Geol. Soc. London, 2004, vol. 161, pp. 447–462.

    Article  Google Scholar 

  12. Gasser, D., Bruand, E., Rubatto, D., and Stuwe, K., The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska, Lithos, 2012, vol. 134–135, pp. 108–122.

  13. Gavrilenko, B.V., Kudryaschov, N.M., and Mitrofanov, F.P., U-Pb isochron age of acid metavolcanic rocks, Mossel Series, Spitsbergen, In: Kompleksnye issledovaniya prirody Shpitsbergena (Complex Investigations of the Nature of Spitsbergen), Apatity, 2004, vol. 4, pp. 107–115.

    Google Scholar 

  14. Gee, D.G., Schouenborg, B., Peucat, J.-J., Abakumov, S.A., Krasilshchikov, A.A., and Tebenkov, A.M., New evidence of basement in the Svalbard Caledonides: Early Proterozoic zircon ages from Ny Friesland granites, Norsk Geologisk. Tidsskrift, 1992, vol. 72, pp. 181–190.

    Google Scholar 

  15. Gieré, R. and Sorensen, S.S., Allanite and other REE-rich epidote-group minerals, Rev. Mineral. Geochem., 2004, vol. 56, pp. 431–493.

    Article  Google Scholar 

  16. Glikin, A.E., Polymineral–Metasomatic Crystallogenesis, Springer, 2009.

    Google Scholar 

  17. Goswami-Banerjee, S. and Robyr, M., Pressure and temperature conditions for crystallization of metamorphic allanite and monazite in metapelites: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India), J. Metamorph. Geol., 2015, vol. 33, pp. 535–556.

    Article  Google Scholar 

  18. Grapes, R. and Watanabe, T., Paragenesis of titanite in metagreywackes of the Franz Josef-Fox Glacier area, Southern Alps, New Zealand, Eur. J. Mineral., 1992, vol. 4, pp. 547–555.

    Article  Google Scholar 

  19. Gulbin, Yu.L., Optimization of the garnet–biotite geothermometer. II. Calibration Equations and Accuracy of Error, Zap. Ross. Mineral. O-va, 2010, no. 6, pp. 22–38.

  20. Higgins, J.B. and Ribbe, P.H., The crystal chemistry and space groups of natural and synthetic titanites, Am. Mineral., 1976, vol. 61, pp. 878–888.

    Google Scholar 

  21. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic dataset for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–344.

    Article  Google Scholar 

  22. Hunt, J.A. and Kerrick, D.M., The stability of sphene: experimental redetermination and geologic implications, Geochim. Cosmochim. Acta, 1977, vol. 41, pp. 279–288.

    Article  Google Scholar 

  23. Janots, E., Engi, M., Berger, J., Allaz, J., Schwarz, O., and Spandler, C., Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610°C, J. Metamorph. Geol., 2008, Vol. 26, pp. 509–526.

    Article  Google Scholar 

  24. Janots, E., Negro, F., Brunet, F., Goffé, B., and Engi, M., Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology, Lithos, 2006, vol. 87, pp. 214–234.

    Article  Google Scholar 

  25. Janots, E., Brunet, F., Goffe, B., Poinssot, C., Burchard, M., and Cemic, L., Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites, Contrib. Miner. Petrol., 2007, vol. 154, pp. 1–14.

    Article  Google Scholar 

  26. Johansson, A., Gee, D.G., Bjorklund, L., and Witt-Nilsson, P., Isotope studies of granitoids from the Bangenhuk Formation, Ny Friesland Caledonides, Svalbard, Geol. Mag, 1995, vol. 132, pp. 303–320.

    Article  Google Scholar 

  27. Kaneko, Y. and Miyano, T., Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers, Lithos, 2004, vol. 73, pp. 255–269.

    Article  Google Scholar 

  28. Krasil’scikov, A.A., Stratigrafiya i paleotektonika dokembriya–rannego paleozoya Shpitsbergena (Stratigraphy and Palaeotectonics of the Precambrian and Early Palaeozoic of Spitsbergen), Leningrad: Nedra, 1973.

  29. Krenn, E. and Finger, F., Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications, Lithos, 2007, vol. 95, pp. 130–147.

    Article  Google Scholar 

  30. Krenn, E., Ustaszewski, K., and Finger, F., Detrital and newly formed metamorphic monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia, Chem. Geol., 2008, vol. 254, pp. 164–174.

    Article  Google Scholar 

  31. Kretz, R., Symbols for rock-forming minerals, Am. Mineral., 1983, vol. 68, pp. 277–279.

    Google Scholar 

  32. Larionov, A.N., Geochronology of the Fold Base of the Eastern Terrane of Spitsbergen Archipelago, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Apatity, 1999.

  33. Larionov, A.N., Gee, D. G., Tebenkov, A.M., and Witt-Nilsson, P., Detrital zircon ages from the Planetfjella Group of the Mosselhalvoya Nappe, NE Spitsbergen, Svalbard, Proc. Int. Conf. Arctic Margins - ICAM III, 1998, p. 109.

  34. Menard, T. and Spear, F.S., Metamorphism of calcic pelitic schists, Strafford Dome, Vermont: compositional zoning and reaction history, J. Petrol., 1993, vol. 34, pp. 977–1005.

    Article  Google Scholar 

  35. Peterson, R.C. and MacFarlane, D.B., The rare-earth-element chemistry of allanite from the Grenville Province, Can. Mineral., 1993, vol. 31, pp. 159–166.

    Google Scholar 

  36. Petrík, I., Broska, I., Lipka, J., and Siman, P., Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia), Geol. Carpathica, 1995, vol. 46, pp. 79–94.

    Google Scholar 

  37. Sakai, C., Higashino, T., and Enami, M., REE-bearing epidote from Sanbagawa pelitic schists, central Shikoku, Japan, Geochem. J., 1984, vol. 18, pp. 45–53.

    Article  Google Scholar 

  38. Sirotkin, A.N. and Evdokimov, A.N., Endogennye rezhimy I evolyutsiya metamorfizma skladchatykh kompleksov fundamenta arkhipelaga Shpitsbergen (na primere poluostrova Nyu Frisland (Endogenous Regimes and Metamorphic Evolution of Folded Complexes in the Basement of the Spitsbergen Archipelago (a Case Study of Ny Friesland)), St. Petersburg: VNIIOkeangeologia, 2011.

  39. Skrzypek, E., Bosse, V., Kawakami, T., Jean-Emmanuel Martelat J.-E., and Štípská, Transient allanite replacement and prograde to retrograde monazite (re)crystallization in medium-grade metasedimentary rocks from the Orlica–Śnieżnik Dome (Czech Republic/Poland): textural and geochronological arguments, Chem. Geol., 2017, vol. 449, pp. 41–57.

    Article  Google Scholar 

  40. Smith, H.A. and Barreiro, B., Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists, Contrib. Miner. Petrol., 1990, vol. 105, pp. 602–615.

    Article  Google Scholar 

  41. Sorensen, S.S., Petrogenetic significance of zoned allanite in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California, Am. Mineral., 1991, vol. 76, pp. 589–601.

    Google Scholar 

  42. Symmes, G.H. and Ferry, J.M., Evidence from mineral assemblages for infiltration of pelitic schists by aqueous fluids during metamorphism, Contrib. Mineral. Petrol., 1991, vol. 108, pp. 419–438.

    Article  Google Scholar 

  43. Teben’kov, A.M., Gee D. G., Johansson A., and Larionov A.N. The history of tectonic evolution of the Spitsbergen bedrock based on geochronological data. In: Kompleksnye issledovaniya prirody Shpitsbergena (Complex Investigations of the Nature of Spitsbergen), Apatity, 2004, vol. 4, pp. 90–100.

    Google Scholar 

  44. Teben’kov, A.M., Krasil’scikov, A.A., and Balashov, Yu.A., Principal geochronological boundaries and stages of the formation of the Spitsbergen basement, Dokl. Earth Sci., 1996, vol. 346, no. 6, pp. 204–207.

    Google Scholar 

  45. Uher, P., Kohut, M., Ondrejka, M., Konecny, P., and Siman, P., Monazite-(Ce) in Hercynian granites and pegmatites of the Bratislava Massif, Western Carpathians: compositional variations and Th-U-Pb electron-microprobe dating, Acta Geol. Slovaca, 2014, vol. 6, no. (2), pp. 215–231.

  46. Varlamov, D.A., Ermolaeva, V.N., Chukanov, N.V., Jancev, S., Vigasina, M.F., and Plechov, P.Yu., New data on chemical composition and Raman spectra of epidote-supergroup minerals, Zap. Ross. Mineral. O-va, 2019, no. 1, pp. 79–99.

  47. White, R.W., Powell, R., and Holland, T.J.B., Progress relating to calculation of partial melting equilibria for metapelites, J. Metamorph. Geol., 2007, vol. 25, pp. 511–527.

    Article  Google Scholar 

  48. Wing, B.A., Ferry, J.M., and Harrison, T.M., Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology, Contrib. Miner. Petrol., 2003, vol. 145, pp. 228–250.

    Article  Google Scholar 

  49. Wu, C.M., Zhang, J., and Ren, L.D., Empirical garnet–biotite–plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites, J. Petrol, 2004, vol. 45, pp. 1907–1921.

    Article  Google Scholar 

  50. Wu, C.M. and Zhao, G.C., The applicability of the GRIPS geobarometry in metapelitic assemblages, J. Metamorph. Geol., 2006, vol. 24, pp. 297–307.

    Article  Google Scholar 

  51. Yang, P. and Pattison, D., Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota, Lithos, 2006, vol. 88, pp. 233–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Gulbin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nickolsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarpuran Haiyati, S.A., Gulbin, Y.L., Sirotkin, A.N. et al. Compositional Evolution of REE- and Ti-Bearing Accessory Minerals in Metamorphic Schists of Atomfjella Series, Western Ny Friesland, Svalbard and Its Petrogenetic Significance. Geol. Ore Deposits 63, 634–653 (2021). https://doi.org/10.1134/S1075701521070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521070047

Navigation