Skip to main content
Log in

Evolution of Mineral Composition during Eclogite Metamorphism in the Belomorian Mobile Belt: Data from Vichennaya Luda Island

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The detailed mineralogical-geochemical study of eclogites and their retrograde products (amphibolites in a rim of eclogite boudin) from Vichennaya Luda Island (Keret Archipelago, White Sea) revealed systematic variations in major-, trace and rare-earth element composition of rock-forming minerals, which should be taken into account in geochronological and thermobarometric studies. Garnets from garnet–amphibole interlayers in the eclogites demonstrate a prograde zoning. In addition, garnet rims differ from their cores in a “hump-like” REE pattern owing to the elevated Sm, Eu, Gd and Dy contents and a negative slope of HREE pattern, as well as in an increase of Sm/Nd and a decrease of Lu/Hf ratio. It has been established that the eclogites contain clinopyroxene with depleted (to chondritic level) REE content, a positive Eu anomaly, and lowered Ti, V, Cr, Y, Zr, and Hf contents. Based on these geochemical features, the Cpx can be ascribed to relict that have preserved during peak eclogite metamorphism. Amphiboles in amphibolite rim of boudin differ sharply from amphiboles in eclogite in the lowered contents of LREE and some HREE. In addition to almost a two-fold decrease of Ti content in the eclogite–amphibolite sequence, amphiboles demonstrate a significant decrease of V, Sr, Y, Nb, and Hf contents. All biotites have sinusoidal REE pattern, which is typical of minerals formed through fluid-induced disequilibrium processes. Biotite from eclogites has higher Ti content and elevated contents of REE, Nb, V, Cr, Ba, and Hf as compared to biotites from the amphibolization rim. The eclogites and amphibolites developed after them are similar in major, trace, and rare-earth element composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ague, J.J., Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE), Am. Mineral., 2017, vol. 102, pp. 1796–1821.

    Article  Google Scholar 

  2. Balagansky, V., Shchipansky, A., Slabunov, A.I., et al., Archaean Kuru–Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: crustal architecture, timing, and tectonic implications, Int. Geol. Rev., 2015, vol. 57, pp. 1543–1565.

    Article  Google Scholar 

  3. Beinlich, A., Klemd, R., John, T., and Gao, J., Trace-element mobilization during Ca–metasomatism along a major fluid conduit: eclogitization of blueschist as a consequence of fluid–rock interaction, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 1892–1922.

    Article  Google Scholar 

  4. Berezin, A.V., Travin, V.V., Marin, Yu.B., et al., New U–Pb and Sm–Nd ages and P–T estimates for eclogitization in the Fe-rich gabbro dyke in Gridino Area, (Belomorian Mobile Belt), Dokl. Earth Sci., 2012, vol. 444, no. 6, pp. 760–765.

    Article  Google Scholar 

  5. Berezin, A.V., Skublov, S.G., Marin, Yu.B., et al., New occurrence of eclogite in the Belomorian Mobile Belt: geology, metamorphic conditions, and isotope age, Dokl. Earth Sci., 2013, vol. 448, no. 1, pp. 43–53.

    Article  Google Scholar 

  6. Berezin, A.V. and Skublov, S.G., Eclogite–like apogabbro rocks in Sidorov and Bolshaya Ileika islands, Keret Archipelago, White Sea: compositional characteristics, metamorphic age and conditions, Petrology, 2014, vol. 22, no. 3, pp. 234–254.

    Article  Google Scholar 

  7. Carswell, D.A., Eclogites and the eclogite facies: definitions and classifications, Eclogite Facies Rocks, D.A. Carswell, Eds., Glasgow: Blackie, 1990, pp. 1–13.

    Book  Google Scholar 

  8. Dokukina, K. and Mints, M., Subduction of the Mesoarchaean spreading ridge and related metamorphism, magmatism and deformation by the example of the Gridino eclogitized mafic dyke swarm, the Belomorian eclogite province, Eastern Fennoscandian Shield, J. Geodynamics, 2019, vol. 123, pp. 1–37.

    Article  Google Scholar 

  9. Drugova, G.M., and Skublov, S.G., REE geochemistry in metamorphic amphiboles, Geochem. Int., 2003, vol. 41, no. 2, pp. 172–180.

    Google Scholar 

  10. Drugova, G.M. and Skublov, S.G., REE distribution in garnets, clinopyroxenes, amphiboles, and biotites from metamorphic rocks, Zap. Ross. Mineral. O-va, 2004, no. 2, pp. 47–59.

  11. Eskola, P., On the eclogites of Norway. Oslo Videbsk. Skr., I, Mat.–Naturw. Kl, 1921, no. 8, p. 118.

  12. Henry, D.J. and Guidotti, C.V., Titanium in biotite from metapelitic rocks: temperature effects, crystal–chemical controls, and petrologic applications, Am. Mineral., 2002, vol. 87, pp. 375–382.

    Article  Google Scholar 

  13. Henry, D.J., Guidotti, C.V., and Thomson, J.A., The Ti-saturation surface for low–to–medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms, Am. Mineral., 2005, vol. 90, pp. 316–328.

    Article  Google Scholar 

  14. Kaulina, T.V., Yapaskurt, V.O., Presnyakov, S.L., et al., Metamorphic evolution of the Archean eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula): geochemical features of zircon, composition of inclusions, and age, Geochem. Int., 2010, vol. 48, no. 9, pp. 871–890.

    Article  Google Scholar 

  15. Herwartz, D., Skublov S.G., Berezin A.V., and Mel’nik A.E., First Lu–Hf garnet ages of eclogites from the Belomorian Mobile Belt (Baltic Shield, Russia), Dokl. Earth Sci., 2012, vol. 443, no. 1, pp. 377–380.

    Article  Google Scholar 

  16. Konilov, A.N., Shchipansky, A.A., Mints, M.V., and Volodichev, O.I., Petrology of eclogites of the Belomorian province, 32nd IGC.Abstracts, Florence, 2004, vol. 1, p. 108.

    Google Scholar 

  17. Konilov, A.N., Shchipansky, A.A., Mints, M.V., et al., The Salma eclogites of the Belomorian Province, Russia: HP/UHP metamorphism through the subduction of Mesoarchean oceanic crust, Ultrahigh-Pressure Metamorphism. 25 Years after the Discovery of Coesite and Diamond, Dobrzhinetskaya, L.F., Faryad, S.W., and Wallis, S., Eds., Elsevier, 2011, pp. 623–670.

  18. Korikovsky, S.P., Depth facies of medium-temperature crustal eclogites in the PT stability field of sodic plagioclase, Tez. dokl. Mezhdunarodnoi konferentsii k 100-letiyu N.A. Eliseeva (Proc. International Conference on 100th Anniversary of N.A. Eliseeva), St-Petersburg, 1998, p. 5.

  19. Korikovsky, S.P., Prograde transformations of medium-pressure amphibolites during their eclogitization, Petrology, 2009, vol. 17, no. 4, pp. 315–330.

    Article  Google Scholar 

  20. Korikovsky, S.P., Mircovski, V., and Zakariadze, G.S., Metamorphic evolution and the composition of the protolith of plagioclase-bearing eclogite-amphibolites of the Buchim Block of the Serbo-Macedonian massif, Macedonia, Petrology, 1997, vol. 5, no. 6, pp. 596–613.

    Google Scholar 

  21. Kosoi, L.A., Geological—petrographic essay of the Keret area, North Karelia, Uch. Zap. Leningr. Gos. Univ., 1938, vol. 26, pp. 65–99.

    Google Scholar 

  22. Kozlovskii, V.M. and Aranovich, L.Ya. Geological and structural conditions of eclogitization of Paleoproterozoic basic dikes in the eastern Belomorian Mobile Belt, Geotectonics, 2008, vol. 42, no. 4, pp. 305–317.

    Article  Google Scholar 

  23. Kozlovskii, V.M. and Aranovich, L.Ya., Petrology and thermobarometry of eclogite rocks in the Krasnaya Guba dike field, Belomorian Mobile Belt, Petrology, 2010, vol. 18, no. 1, pp. 27–49.

    Article  Google Scholar 

  24. Kozlovskii, V.M. and Bychkova, Ya.V., Geochemical evolution of amphibolites and gneisses of the Belomorian Mobile Belt during Paleoproterozoic metamorphism, Geochem. Int., 2016, vol. 54, no. 6, pp. 529–542.

    Article  Google Scholar 

  25. Kozlovskii, V.M., Aranovich, L.Ya., and Frishman, N.I., Prograde transformations of amphibolites into eclogites and eclogite-like rocks in the low-pressure field of the eclogte facies, Russ. Geol. Geophys., 2015, vol. 56, no. 5, pp. 906–931.

    Article  Google Scholar 

  26. Leake, B.E., Woolley, A.R., Arps, C.E., et al., Nomenclature of amphiboles; report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Mineral. Mag., 1997, vol. 61, pp. 295–310.

    Article  Google Scholar 

  27. Li, X., Zhang, L., Wei, C., et al., Neoarchean–Paleoproterozoic granulite–facies metamorphism in Uzkaya Salma eclogite-bearing melange, Belomorian Province (Russia), Precambrian Res., 2017a, vol. 294, pp. 257–283.

    Article  Google Scholar 

  28. Li, X., Zhang, L., Wei, C., et al., Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P–T path of Belomorian eclogites, J. Metamorph. Geol., 2017b, vol. 36, pp. 1–22.

    Article  Google Scholar 

  29. Likhanov, I.I., Mass–transfer and differential element mobility in metapelites during multistage metamorphism of the Yenisey Ridge, Siberia, Metamorphic Geology: Microscale to Mountain Belts, Ferrero, S., Lanari, P., Goncalves, P., and Grosch, E.G., Geol. Soc. London: Spec. Publ., 2018, vol. 478, pp. SP478-11.

    Google Scholar 

  30. Likhanov, I.I. and Reverdatto, V.V., Scales of mass transfer and differential mobility of major and rare-earth elements in metapelites during collisional metamorphism, Dokl. Earth Sci., 2015, vol. 464, no. 2, pp. 940–945.

    Article  Google Scholar 

  31. McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  32. Melnik, A.E., Eclogtes of Northwestern Belomoran Mobile Belt: Geochemical Characteristics and Timing of Metamorphism, Candidate’s (Geol.-Min.) Dissertation, St. Petersburg, IGGD RAN, 2015.

  33. Mints M.V., Konilov A.N., Dokukina K.A., et al., The Belomorian eclogite province: unique evidence of Meso–Neoarchaean subduction and collision, Dokl. Earth Sci., 2010, vol. 434, no. 6, pp. 1311–1316.

    Article  Google Scholar 

  34. Mints, M.V., Belousova, E.A., Konilov, A.N., et al., Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia, Geology, 2010, vol. 38, no. 8, pp. 739–742.

    Article  Google Scholar 

  35. Mints, M.V., Dokukina, K.A., and Konilov, A.N., The Meso–Neoarchaean Belomorian eclogite province: tectonic position and geodynamic evolution, Gondwana Res., 2014, vol. 25, pp. 561–584.

    Article  Google Scholar 

  36. Möller, A., Appel, P., Mezger, K., and Schenk, V., Evidence for a 2 Ga subduction zone: eclogites in the Usagarian belt of Tanzania, Geology, 1995, vol. 23, pp. 1067–1070.

    Article  Google Scholar 

  37. Morimoto, N., Fabries, J., Ferguson, A.K., et al., Nomenclature of pyroxenes, Am. Mineral., 1988, vol. 73, pp. 1123–1133.

    Google Scholar 

  38. O’Neil, J., Carlson, R.W., Paquette, J.-L., and Francis, D., Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt, Precambrian Res., 2012, vol. 220–221, pp. 23–44.

    Article  Google Scholar 

  39. Pyle, J.M. and Spear, F.S., Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions, Am. Mineral., 2003, vol. 88, p. 708.

    Article  Google Scholar 

  40. Rass, I.T., Aranovich, L.Ya., Korpechkov, D.I., and Kozlovskii, V.M., Geochemistry of metamorphic processes in mafic rocks of the Krasnaya Guba area, Belomorian Mobile Belt, Geochem. Int., 2014, vol. 52, no. 8, pp. 670–686.

    Article  Google Scholar 

  41. Saranchina, G.M., Amphibolitic and eclogitic rocks of Kiv Guba and Kuzokotskoi Guba of the White Sea, Sb. statei k 70-letiyu akad. D.S. Belyankina (A collection of Papers on 70th Anniversary of Academician D.S. Belyankin), Moscow: Izd-vo AN SSSR, 1946, pp. 273–281.

    Google Scholar 

  42. Seifert, K.E. and Chadima, S.A., Depletion of heavy rare–earth elements in metamorphic minerals from Adirondack anorthosites, Geology, 1989, vol. 17, pp. 1004–1006.

    Article  Google Scholar 

  43. Shchipansky A.A., Khodorevskaya L.I., Konilov A.N., Slabunov A.I. Eclogites from the Belomorian mobile belt (Kola Peninsula): geology and petrology, Russ. Geol. Geophys., 2012a. vol. 53, no. 1, pp. 1–21.

    Article  Google Scholar 

  44. Shchipansky, A.A., Khodorevskaya, L.I., and Slabunov, A.I., The geochemistry and isotopic age of eclogites from the Belomoran Belt (Kola Peninsula): evidence from subducted Archean oceanic crust, Russ. Geol. Geophys., 2012b, vol. 53, no. 1, pp. 341–364.

    Google Scholar 

  45. Skora, S., Baumgartner, L.P., Mahlen, N.J., et al., Diffusion–limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 703–720.

    Article  Google Scholar 

  46. Skublov, S.G., Geokhimiya redkozemel’nykh elementov v porodoobrazuyushchikh metamorficheskikh mineralakh (Geochemistry of Rare-Earth Elements in Rock-Forming Metamorphic Minerals), St.-Petersburg: Nauka, 2005.

  47. Skublov, S.G. and Drugova, G.M., Ion-microprobe study of zoning of metamorphic garnets, Zap. Ross. Mineral. O-va, 2002, no. 3, pp. 105–114.

  48. Skublov, S. and Drugova, G., Patterns of trace–element distribution in calcic amphiboles as a function of metamorphic grade, Can. Mineral., 2003, vol. 41, pp. 383–392.

    Article  Google Scholar 

  49. Skublov, S.G. and Drugova, G.M., Rare earth elements in zonal metamorphic minerals, Geochem. Int., 2004a, vol. 42, no. 3, pp. 236–248.

    Google Scholar 

  50. Skublov, S.G. and Drugova, G.M., REE geochemistry of metamorphic biotite, Geochem. Int., 2004b, vol. 42, no. 3, pp. 280–284.

    Google Scholar 

  51. Skublov S.G., Balashov Yu.A., Marin Yu.B., et al., U–Pb age and geochemistry of zircons from Salma eclogites (Kuru-Vaara Deposit, Belomorian Belt), Dokl. Earth Sci., 2010, vol. 432, no. 2, pp. 791–798.

    Article  Google Scholar 

  52. Skublov, S.G., Astaf’ev, B.Yu., Marin, Yu.B., et al., New data on the age of eclogites from the Belomorian Mobile Belt at Gridino settlement area, Dokl. Earth Sci., 2011a, vol. 439, no. 6, pp. 1163–1170.

    Article  Google Scholar 

  53. Skublov, S.G., Berezin, A.V., and Melnik, A.E., Paleoproterozoic eclogites in the Salma area, northwestern Belomorian Mobile Belt: composition and isotopic geochronologic characteristics of minerals and metamorphic age, Petrology, 2011b, vol. 19, no. 5, pp. 470–495.

    Article  Google Scholar 

  54. Skublov, S.G., Berezin, A.V., and Berezhnaya, N.G., General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian Mobile Belt, Petrology, 2012, vol. 20, no. 5, pp. 427–449.

    Article  Google Scholar 

  55. Skublov, S.G., Mel’nik, A.E., Marin, Yu.B., et al., New data on the age (U–Pb, Sm–Nd) of metamorphism and a protolith of eclogite-like rocks from the Krasnaya Guba Area, Belomorian Belt, Dokl. Earth Sci., 2013, vol. 453, no. 1, pp. 1158–1164.

    Article  Google Scholar 

  56. Skublov S.G., Zak, T., Berezin, A.V., et al., In situ LA–ICP–MS investigation of the geochemistry and U–Pb age of rutile from the rocks of the Belomorian Mobile Belt, Geochem. Int., 2013, vol. 51, no. 2, pp. 164–171.

    Article  Google Scholar 

  57. Skublov S.G., Berezin A.V., Melnik, A.E., et al., Protolith age of eclogites from the southern part of Pezhostrov Island, Belomorian Belt: protolith of metabasites as indicator of eclogitization time, Petrology, 2016, vol. 24, no. 6, pp. 594–607.

    Article  Google Scholar 

  58. Slabunov, A.I., Volodichev, O.I., Skublov, S.G., and Berezin, A.V., Main stages of the formation of Paleoproterozoic eclogitized gabbro-norite: evidence from U–Pb (SHRIMP) dating of zircons and study of their genesis, Dokl. Earth Sci., 2011, vol. 437, no. 1, pp. 396–400.

    Article  Google Scholar 

  59. Sobolev, A.V. and Batanova, V.G., Mantle lherzolites of the Troodos ophiolite complex, Cyprus: clinopyroxene geochemistry, Petrology, 1995, vol. 3, no. 5, pp. 440–448.

    Google Scholar 

  60. Sudovikov, N.G., Materialy po geologii yugo-zapadnoi chasti Kol’skogo poluostrova (Materials on Geology of Southwestern Kola Peninsula), Tr. Leningr. Geol. Tresta, 1936, Vyp. 10, Leningrad–Moscow: Glav. Red. Geol.–Razved. Geodez. Liter., 1936.

  61. Travin, V.V. and Kozlova, N.E., Eclogitization of basites in Early Proterozoic shear zones in the area of the village of Gridino, western Belomorie, Petrology, 2009, vol. 17, no. 7, pp. 684–706.

    Article  Google Scholar 

  62. Tribuzio, R., Messiga, B., Vannucci, R., and Bottazzi, P., Rare earth element redistribution during high-pressure–low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): implications for light REE mobility in subduction zones, Geology, 1996, vol. 24, pp. 711–714.

    Article  Google Scholar 

  63. Volkova, N.I., Kovyazin, S.V., Stupakov, S.I., et al., Trace element distribution in mineral inclusions in zoned garnets from eclogites of the Atbashi Range (South Tianshan), Geochem. Int., 2014, vol. 52, no. 11, pp. 939–961.

    Article  Google Scholar 

  64. Volodichev O.I., Slabunov A.I., Bibikova E.V., et al., Archean eclogites in the Belomorian mobile belt, Baltic Shield, Petrology, 2004, vol. 12, no. 6, pp. 540–560.

    Google Scholar 

  65. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  66. Wu, C.M. and Chen, H.X., Revised Ti-in-biotite geothermometer for ilmenite–or rutile-bearing crustal metapelites, Sci. Bull., 2015, vol. 60, pp. 116–121.

    Article  Google Scholar 

  67. Yu, H., Zhang, L., Zhang, L., et al., The metamorphic evolution of Salma–type eclogite in Russia: Constraints from zircon/titanite dating and phase equilibria modeling, Precambrian Res., 2019, vol. 326, pp. 363–384.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We pay tribute to Sergey Petrovich Korikovsky, who has supported our study of Belomorian eclogites for ten years. We are grateful to Sergey Petrovich for a continuous attention to our studies, the joint discussion of results and formulation of new tasks, as well as critical reviewing of our publications.

Critical comments of O.G. Safonov and T.V. Kaulina significantly improved our manuscript.

Analytical studies were carried out by S.G. Simakin and E.V. Potapov (Yaroslavl Branch, Physical-Technological Institute, Russian Academy of Sciences), O. L. Galankina (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences). We thank A.E. Melnik and BBS “Kartesh” (Zoological Institute of the Russian Academy of Sciences) for help during field works.

Funding

The study was made in the framework of the State Task of the Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences (project no. 0153-2019-0002) and was financially supported by the Russian Foundation for Basic Research (project no. 18-55-53022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Skublov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, A.V., Salimgaraeva, L.I. & Skublov, S.G. Evolution of Mineral Composition during Eclogite Metamorphism in the Belomorian Mobile Belt: Data from Vichennaya Luda Island. Petrology 28, 73–92 (2020). https://doi.org/10.1134/S0869591120010014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120010014

Keywords:

Navigation