Skip to main content
Log in

Composition and Structure of Zircon from Harzburgite Inclusion Hosted in Granulites of the Bug Complex, Ukrainian Shield

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The comprehensive study (electron microscopy, mass-spectrometry of secondary ions, Raman spectroscopy) of zircon from harzburgite inclusion in granulites of the Bug complex (Ukrainian Shield) is carried out. Based on a number of features, the studied zircons are subdivided into three groups. Zircon from the first group is of igneous genesis and crystallized 2.8 Ga ago at the temperature of about 650°C from a melt of orthopyroxenite composition. Zircon from the second group underwent hydrothermal alteration ca. 2.75 Ga ago at the temperature of about 750°C. Zircon from the third group is distinctive in several geochemical characteristics (higher Lu/Hf ratio, etc.) and formed before the hydrothermal process, but their compositions were altered by the fluid. Conditions of the igneous zircon (first group) crystallization were characterized by the higher \({{f}_{{{{{\text{O}}}_{{\text{2}}}}}}}\) value, compared to the later hydrothermal alteration. The hydrothermal process has provided the distortion of zircon crystal lattice, which is reflected in the Raman spectra, and the formation of amorphous structure in the uranium-rich zircon from the third group. In terms of trace element contents, the first and second zircon groups indicate different initial melts (from which they originated) from the third zircon group; the melt of the third group was more mafic. The obtained results support the idea about the hybrid character of the melt and that the rock formed in two main stages, namely, a magmatic one and fluid alteration, separated in time and having different oxidation-reduction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Amelin, Y., Lee, D.C., Halliday, A.N., and Pidgeon, R.T., Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons, Nature, 1999, vol. 399, pp. 252–255.

    Article  Google Scholar 

  2. Baltybaev, S.K., Lobach-Zhuchenko, S.B., Egorova, Yu.S., Balaganskiy, V.V., Galankina, O.L., and Yurchenko, A.V., Transformation of peridotites in crustal conditions: thermodynamic modeling of mineral formation, Evolyutsiya veshchestvennogo i izotopnogo sostava dekembriiskoi litosfery (Evolution of the Chemical and Isotopic composition of the Precambrian Lithosphere), Saint Petersburg: Izd.-Poligraf. Ass. Vyssh. Uchebn. Zaved., 2018 (in press).

  3. Bell, E.A. and Harrison, T.M., Post-Hadean transitions in Jack Hills zircon provenance: A signal of the Late Heavy Bombardment? Earth Planet. Sci. Lett, 2013, vol. 369, pp. 1–11.

    Article  Google Scholar 

  4. Belousova, E.A. and Griffin, W.L., O’Reilly S.Y., Fisher N.I. Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 602–622.

    Article  Google Scholar 

  5. Bingen, B., Demaiffe, D., and Hertogen, J., Redistribution of rare earth elements, thorium, uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite and monazite in orthogneisses from southwestern Norway, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1341–1354.

    Article  Google Scholar 

  6. Burnham, A.D. and Berry, A.J., On experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity, Geochim. Cosmochim. Acta, 2012, vol. 95, pp. 196–212.

    Article  Google Scholar 

  7. Dawson, P., Hargreave, M.M., and Wilkinson, G.R., The vibrational spectrum of zircon (ZrSiO4), J. Phys. C: Solid St. Phys., 1971, vol. 4, pp. 240–256.

    Article  Google Scholar 

  8. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, vol. 46, no. 9, pp. 912–927.

    Article  Google Scholar 

  9. Fu, B., Page, Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., and Valley, J., Ti-in-zircon thermometry: applications and limitations, Contrib. Miner. Petrol., 2008, vol. 156, pp. 197–215.

    Article  Google Scholar 

  10. Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., and O’Reilly S.Y., Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons, Precambrian Res., 2004, vol. 131, pp. 231–282.

    Article  Google Scholar 

  11. Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghoj, K., and Schwartz, J.J., Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance, Geology, 2007, vol. 35, pp. 643–646.

    Article  Google Scholar 

  12. Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., and Schwartz, J.J., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere, Contrib. Miner. Petrol, 2009, vol. 158, pp. 757–783.

    Article  Google Scholar 

  13. Hoskin, P.W.O. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62.

    Book  Google Scholar 

  14. Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 637–648.

    Article  Google Scholar 

  15. Jennings, E.S., Marschall, H.R., Hawkesworth, C.J., and Storey, C.D., Characterization of magma from inclusions in zircon: apatite and biotite work well, feldspar less so, Geology, 2011, vol. 39, pp. 863–866.

    Article  Google Scholar 

  16. Knittle, E. and Williams, Q., High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K, Am. Mineral., 1993, vol. 78, pp. 245–252.

    Google Scholar 

  17. Kolesov, B.A., Geiger, C.A., and Armbruster, T., The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy, Eur. J. Mineral., 2001, vol. 1, pp. 939–948.

    Article  Google Scholar 

  18. Kremenetsky, A.A., Gromalova, N.A., Belousova, E., and Veremeeva, L.I., Isotopic and geochemical features of newly formed zircon rims as a criterion for identification of feeding sources of Ti–Zr placers, Geol. Ore Deposits, 2011, vol. 53, pp. 455–473.

    Article  Google Scholar 

  19. Kretz, R., Symbols for rock-forming minerals, Am. Mineral., 1983, vol. 68, pp. 277–279.

    Google Scholar 

  20. Lobach-Zhuchenko, S.B., Egorova, Yu.S., Baltybaev, S.K., Balaganskiy, V.V., Stepanyuk, L.M., Yurchenko, A.V., Galankina, O.L., Bogomolov, E.S., and Sukach, V.V. Peridotites in Paleoarchean orthogneisses of Bug granulite-gneiss region of the Ukrainian shield: geological position, peculiarities of composition and genesis, Evolyutsiya veshchestvennogo i izotopnogo sostava dekembriiskoi litosfery (Evolution of the Chemical and Isotopic composition of the Precambrian Lithosphere), Saint Petersburg: Izd.-Poligraf. Ass. Vyssh. Uchebn. Zaved., 2018 (in press).

  21. Lobach-Zhuchenko, S.B., Baltybaev, S.K., Glebovitsky, V.A., Sergeev, S.A., Lokhov, K.I., Egorova, Yu.S., Balagansky, V.V., Skublov, S.G., Galankina, O.L., and Stepanyuk, L.M., U-Pb SHRIMP-II-age and origin of zircon from lhertzolite of the Bug Paleoarchean complex, Ukrainian Shield, Dokl. Earth Sci, 2017, vol. 477, pp. 1391–1395.

    Article  Google Scholar 

  22. McDonough, W.F. and Sun, S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  23. Moller, A., O’Brien P.J., Kennedy A., Kroner A. Polyphase zircon in ultra-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon, J. Metamorph. Geol., 2002, vol. 20, pp. 727–740.

    Article  Google Scholar 

  24. Rayner, N., Stern, R.A., and Carr, S.D., Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib. Miner. Petrol., 2005, vol. 148, pp. 721–734.

    Article  Google Scholar 

  25. Rubatto, D., Williams, I.S., and Buick, I.S., Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia, Contrib. Miner. Petrol, 2001, vol. 140, pp. 458–468.

    Article  Google Scholar 

  26. Scaillet, B. and Gaillard, F., Redox state of early magmas, Nature, 2011, vol. 480, pp. 48–49.

    Article  Google Scholar 

  27. Skolotnev, S.G., Bel’tenev, V. E., Lepekhina, E. N., and Ipat’eva, I. S., Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications, Geotectonics, 2010, vol. 44, pp. 462–492.

    Article  Google Scholar 

  28. Stepanyuk, L.M., Crystallogenesis and age of zircon from mafic-ultramafic rocks association of Middle Bug area, Mineral. Zh., 1996, vol. 18, no. 4, pp. 10–19.

    Google Scholar 

  29. Trail, D., Watson, B., and Tailby, N.D., The oxidation state of Hadean magmas and implications for early Earth’s atmosphere, Nature, 2011, vol. 480, pp. 79–82.

    Article  Google Scholar 

  30. Vavra, G., Schmid, R., and Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to granulite-facies zircons: geochronology of the Ivrea zone (Southern Alps), Contrib. Mineral. Petrol., 1999, vol. 134, pp. 380–404.

    Article  Google Scholar 

  31. Vervoort, J.D. and Blichert-Toft, J., Evolution of the depleted mantle: Hf evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 533–556.

    Article  Google Scholar 

  32. Wang, S.-J. Li, S.-G., An, S.-C., and Hou, Z.-H. A granulite record of multistage metamorphism and REE behavior in the Dabie orogen: constraints from zircon and rock-forming minerals, Lithos, 2012, vol. 136-139, pp. 109–125.

    Article  Google Scholar 

  33. Watson, E.B., Wark, D.A., and Thomas, J.B., Crystallization temperature for zircon and rutile, Contrib. Miner. Petrol, 2006, vol. 51, pp. 413–433.

    Article  Google Scholar 

  34. Whitehouse, M.J. and Platt, J.P., Dating high-grade metamorphism - constraints from rare-earth elements in zircon and garnet, Contrib. Miner. Petrol, 2003, vol. 145, pp. 61–74.

    Article  Google Scholar 

  35. Wittmann, A., Kenkmann, T., Schmitt, R.T., and Stoffler, D., Shock-metamorphosed zircon in terrestrial impact craters, Meteor. Planet. Sci., 2006, vol. 41, pp. 433–454.

    Article  Google Scholar 

  36. Zhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, Ph., Ewing, R.C., Clark, A.M., and Leroux, H., Metamictization of zircon: Raman spectroscopic study, Phys. Condens. Matt., 2000, vol. 12, pp. 1915–1925.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank V.N. Bocharov (St. Petersburg State University) for the help in performing Raman spectroscopy of zircon and S.G. Simakin and E.V. Potapov (Yaroslavl Branch of the Physical-Technological Institute of the Russian Academy of Sciences) for conducting geochemical studies of zircon.

Funding

The work was made in the framework of research topic of the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. B. Lobach-Zhuchenko or S. G. Skublov.

Additional information

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobach-Zhuchenko, S.B., Skublov, S.G., Egorova, Y.S. et al. Composition and Structure of Zircon from Harzburgite Inclusion Hosted in Granulites of the Bug Complex, Ukrainian Shield. Geol. Ore Deposits 61, 722–735 (2019). https://doi.org/10.1134/S1075701519080075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701519080075

Keywords:

Navigation