Skip to main content
Log in

Isotopic-Geochemical Features of Zircon and Its Significance for Reconstructing the Geological History of Paleoarchean Granulites in the Ukrainian Shield

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

This paper presents the results of a complex study (morphology of grains, internal texture in cathodoluminescence and backscattered electrons, microprobe analysis, Lu–Hf data) of five groups (generations) of zircon crystals differing in age and separated from the same granulite sample pertaining to the Bug River Complex of the Ukrainian Shield. The data show that the oldest zircon crystals of the first group (3.74 Ga in age) are xenogenic and initially crystallized from a granitic melt; zircon of the second group (3.66 Ga) formed from a mafic melt contaminated by felsic country rocks. The third group (3.59 Ga) is represented by zircons that formed about 100 Ma later than the second group under conditions of granulite-facies metamorphism and with the participation of fluid-saturated anatectic melt. Two Paleoproterozoic zircon groups (~2.5 and 2.1 Ga) also formed under granulite-facies conditions; to a certain extent, their structure and composition were controlled by fluid. The geochemistry of all zircon generations provides evidence for their crystallization in the continental crust, but from the sources differing in the contribution of mantle-derived material and in oxygen fugacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aja, S.U., Wood, S.A., and Williams-Jones, A.E., The aqueous geochemistry of Zr and the solubility of some Zrbearing minerals, Appl. Geochem., 1995, vol. 10, pp. 603–620.

    Article  Google Scholar 

  • Balaganskii, V.V., Kudryashov, N.M., Balashov, Yu.A., Apanasevich, E.A., Gannibal, L.F., and Levkovich, N.V., The age of the Zhemchuzhnyi drusite massif, northwestern White Sea area: U–Pb isotopic data and geological implications, Geochem. Int., 1997, vol. 35, no. 2, pp. 127–136.

    Google Scholar 

  • Bibikova, E.V., U–Pb geokhronologiya rannikh etapov razvitiya drevnikh shchitov (U–Pb Geochronology of the Early Evolutionary Stages of Ancient Shields), Moscow: Nauka, 1989.

  • Bibikova, E.V., Claesson, S., Fedotova, A.A., Stepanyuk, L.M., Shumlyansky, L.V., and Kirnozova, T., Isotope-geochronological (U–Th–Pb, Lu–Hf) study of zircons from the Archean magmatic and metasedimentary rocks of the Podolia Domain, Ukrainian shield, Geochem. Int., 2013, no. 51, pp. 87–108.

    Article  Google Scholar 

  • Black, L.P., Williams, I.S., and Compston, W., Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica, Contrib. Mineral. Petrol., 1986, vol. 94, pp. 427–437.

    Article  Google Scholar 

  • Blundy, J. and Wood, D., Partitioning of trace elements between crystals and melts, Earth Planet. Sci. Lett., 2003, vol. 210, pp. 385–392.

    Article  Google Scholar 

  • Bouvier, A., Vervoort, J.D., and Patchett, P.J., The Lu–Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sci. Lett., 2008, vol. 273, pp. 48–57.

    Article  Google Scholar 

  • Bouvier, A.S., Ushikubo, T., Kita, N.T., Cavosie, A.J., Kozdon, R., and Valley, J.W., Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 745–768.

    Article  Google Scholar 

  • Burnham, A.D. and Berry, A.J., On experimental study of trace element partirioning between zircon and melt as a function of oxygen fugacity, Geochim. Cosmochim. Acta, 2012, vol. 95, pp. 196–212.

    Article  Google Scholar 

  • Cavosie, A.J., Valley, J.W., and Wilde, S.A., E.I.M.F. correlated micro-analysis of zircon: trace element, 18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5601–5616.

    Article  Google Scholar 

  • Claesson, S., Bibikova, E., Bogdanova, S., and Skobelev, V., Archaean terranes, Palaeoproterozoic reworking, and accretion in the Ukrainian Shield, East European Craton, in European Lithosphere Dynamics, Gee, D.G. and Stephenson, R.A., Eds., Geol. Soc. London, Mem., 2006, vol. 32, pp. 645–654.

    Google Scholar 

  • Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., Atlas of zircon textures, in Zircon, Hanchar, J.M. and Hoskin, P.W.O., Rev. Mineral. Geochem., 2003, vol. 53, pp. 469–500.

    Google Scholar 

  • Degeling, H., Eggins, S., and Ellis, D.J., Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown, Mineral. Mag., 2001, vol. 65, pp. 749–758.

    Article  Google Scholar 

  • Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, vol. 46, pp. 912–927.

    Article  Google Scholar 

  • Fu, B., Page, F.Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., and Valley, J.W., Ti–in-zircon thermometry: applications and limitations, Contrib. Mineral. Petrol., 2008, vol. 156, pp. 197–215.

    Article  Google Scholar 

  • Garde, A.A., McDonald, I., Dyck, B., and Keulen, N., Searching for giant, ancient impact structures on earth: the Mesoarchaean Maniitsoq structure, West Greenland, Earth Planet. Sci. Lett., 2012, vol. 337-338, pp. 197–210.

    Article  Google Scholar 

  • Glebovitsky, V.A. and Kotov, A.B., Sal’nikova, E.B., Larin A.M., and Velikoslavinsky, S.D., Granulite complexes of the Dzhugdzhur–Stanovoi fold region and the Peristanovoi belt: age, formation conditions, and geodynamic settings of metamorphism, Geotectonics, 2009, vol. 43, no. 4, pp. 253–263.

    Article  Google Scholar 

  • Glikson, A.Y., The asteroid impact connection of planetary evolution, Dordrecht: Springer-briefs, 2013. Griffin, W.L., Pearson, N.J., Belousova, E.A., and Saeed, A., Comment: Hf-isotope heterogeneity in zircon 81500, Chem. Geol., 2006, vol. 233, pp. 358–363.

    Article  Google Scholar 

  • Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghoj, K., and Schwartz, J.J., Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance, Geology, 2007, vol. 35, no. 7, pp. 643–646.

    Article  Google Scholar 

  • Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., and Schwartz, J.J., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 757–783.

    Article  Google Scholar 

  • Halden, N.M., Hawthorne, F.C., Campbell, J.L., Teesdale, W.J., Maxwell, J.A., and Higuchi, D., Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV µ-PIXE, Can. Mineral., 1993, vol. 31, pp. 637–647.

    Google Scholar 

  • Harrison, T.M., Watson, E.B., and Aikman, A.B., Temperature spectra of zircon crystallization in plutonic rocks, Geology, 2007, vol. 35, no. 7, pp. 635–638.

    Article  Google Scholar 

  • Hiess, J., Bennett, V.C., Nutman, A.P., and Williams, I.S., In situ U-Pb, O, and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 4489–4516.

    Article  Google Scholar 

  • Hinton, R.W. and Upton, B.G.J., The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 3287–3302.

    Article  Google Scholar 

  • Hoskin, P.W.O. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, in Zircon, Hanchar, J. M. and Hoskin, P. W. O., Rev. Miner. Geochem., 2003, vol. 53, pp. 27–62.

    Google Scholar 

  • Hoskin, P.W.O. and Ireland, T.R., Rare earth element chemistry of zircon and its use as a provenance indicator, Geology, 2000, vol. 28, no. 7, pp. 627–630.

    Article  Google Scholar 

  • Kamo, S.L., Lana, C., and Morgan, J.V., U–Pb ages of shocked zircon grains link distal K-Pg boundary sites in Spain and Italy with the Xhicxulub impact, Earth Planet. Sci. Lett., 2011, vol. 310, pp. 401–408.

    Article  Google Scholar 

  • Kaulina, T.V. and Bogdanova, M.M., The main stages in the development of the northwestern White Sea region: U–Pb isotopic data, Litosfera, 2000, no. 12, pp. 85–97.

    Google Scholar 

  • Kelsey, D.E., Hand, M., Clark, C., and Wilson, C.J.L., On the application of in situ monazite chemical geochronology to constraining P–T-t histories in high-temperature (>850°C) polymetamorphic granulites from Prydz Bay, East Antarctica, J. Geol. Soc. London, 2007, vol. 164, pp. 667–683.

    Article  Google Scholar 

  • Keppler, H. and Wyllie, P.J., Role of fluids in transport and fractionation of uranium and thorium in magmatic processes, Nature, 1990, vol. 348, pp. 531–533.

    Article  Google Scholar 

  • Korzhinskaya V.S. and Ivanov, I. P., Experimental study of incongruent solubility of zircon in the system ZrO2–SiO2–H2O–HCl at T = 400–600°C and P = 1 kbar, Dokl. Akad. Nauk SSSR, 1988, vol. 299, pp. 970–973.

    Google Scholar 

  • Kröner, A., Hoffmann, J.E., Xie, H., Munker, C., Hegner, E., Wan, Y., Hofmann, A., Lui, D., and Yang, L., Generation of Early Archean gray gneisses through melting of older crust in the eastern Kaapvaal craton, Southern Africa, Precambrian Res., 2014, vol. 255, pp. 823–846.

    Article  Google Scholar 

  • Li, T., Zhai, M., Peng, P., Chen, L., and Guo, J.Ca., 2.5 billion year old coeval ultramafic–mafic and syenite dykes in Eastern Hebei: implication for cratonization of the North China Craton, Precambrian Res., 2010, vol. 180, pp. 143–155.

    Article  Google Scholar 

  • Lobach-Zhuchenko, S.B., Bibikova, E.V., Drugova, G.M., Belyatskii, B.V., Gracheva, T.V., Amelin, Yu.V., and Matrenichev, V.A., Geochronology and petrology of the Tupaya Guba magmatic complex, northwestern Belomorian region, Petrology, 1993, vol. 1, no. 6, pp. 657–677.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Bibikova, E.V., Drugova, G.M., Volodichev, O.I., Chekulaev, V.P., Krylov, I.N., Gracheva, V., and Makarov, V., Archean magmatism of the Notozero area of the North-West Belomorian region: isotope geochronology and petrology, Petrology, 1995, vol. 3, no. 6, pp. 593–621.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Balagansky, V.V., Baltybaev, Sh.K., Stepanyuk, L.M., Ponomarenko, A.N., Lochov, K.I., Koreshkova, M.Yu., Yurchenko, A.V., Egorova, Yu.S., Sykach, V.V., Berezhnaya, N.G., and Bogomolov, E.S., Evolution of the Bug granulite complex based on isotope-geochronological study (Middle Bug area, Ukrainian Shield), Miner. Zh., 2013, vol. 35, no. 4, pp. 86–98.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Kaulina, T.V., Baltybaev, S.K., Balagansky, V.V., Egorova, Yu.S., Lokhov, K.I., Skublov, S.G., Sukach, V.V., Bogomolov, E. S., Stepanyuk, L.M., Galankina, O.L., Berezhnaya, N.G., Kapitonov, I.N., Antonov, A.V., and Sergeev, S.A. The long (3.7–2.1 Ga) and multistage evolution of the Bug Granulite-Gneiss Complex, Ukrainian Shield, based on the SIMS U-Pb ages and geochemistry of zircons from a single sample, Geol. Soc. London Spec. Publ., 2016 (in press).

    Google Scholar 

  • Mojzsis, S.I., Clues to the Hadean environment in the chemistry of ancient (4270–3900 Ma) terrestrial zircons, in Origin of the Earth and Moon. Huston: Lunar and Planetary Institute, LPI Contribution, 1998, no. 957, pp. 25–26.

    Google Scholar 

  • Möller, A., O’Brien, P.J., Kennedy, A., and Kröner, A., Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahightemperature granulites of Rogaland (SW Norway), in Geochronology: Linking the Isotopic Record with Petrology and Textures, Vance, D., Moller, W., and Villa, I.M., Eds., Geol. Soc. London Spec. Publ., 2003, vol. 220, pp. 65–81.

    Google Scholar 

  • Poller, U., Gladkochub, D., Donskaya, N., Mazukabzov, A., Sklyarov, E., and Todt, W., Multistage magmatic and metamorphic evolution in the southern siberian craton: Archean and Palaeoproterozoic zircon ages revealed by SHRIMP and TIMS, Precambrian Res., 2005, vol. 136, pp. 353–368.

    Article  Google Scholar 

  • Rayner, N., Stern, R.A., and Carr, D., Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada, Contrib. Mineral. Petrol., 2005, vol. 148, pp. 721–734.

    Article  Google Scholar 

  • Reimold, W.U., Leroux, H., and Gibson, R.L., Shocked and thermally metamorphosed zircon from the Vredefort impact structure, South Africa: a transmission electron micoscopic study, Eur. J. Mineral., 2002, vol. 14, pp. 859–868.

    Article  Google Scholar 

  • Rubatto, D. and Hermann, J., Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 12, pp. 2173–2187.

    Google Scholar 

  • Rubatto, D. and Hermann, J., Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks, Chem. Geol., 2007, vol. 241, pp. 38–61.

    Article  Google Scholar 

  • Schaltegger, U., Fanning, C.M., Gunther, D., Maurin, J.C., Schulmann, K., and Gebauer, D., Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence, and microchemical evidence, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 186–201.

    Article  Google Scholar 

  • Schmidberger, S.S., Simonetti, A., Francis, D., and Gariepy, C., Probing Archean lithosphere using the Lu–Hf isotope systematics of peridotite xenoliths from Somerset island kimberlites, Canada, Earth Planet. Sci. Lett., 2002, vol. 197, pp. 245–259.

    Article  Google Scholar 

  • Schmitz, M.D., Vervoort, J.D., Bowring, S.A., and Patchett, P.J., Decoupling of the Lu–Hf and Sm–Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa, Geology, 2004, vol. 32, pp. 405–408.

    Article  Google Scholar 

  • Sergeev, S.A., Lobach-Zhuchenko, S.B., Arestova, N.A., Tolmacheva, E.V., Berezhnaya, N.G., Matukov, D.I., Lokhov, K.I., and Antonov, A.V., Age and geochemistry of zircons from the ancient granitoids of the Vyg River, Southeastern Karelia, Geochem. Int, 2008, vol. 46, no. 6, pp. 595–607.

    Article  Google Scholar 

  • Shiøtte, L., Compston, W., and Bridgewater, D., Ion-probe U–Th–Pb zircon dating of polymetamorphic orthogneisses from northern Labrador, Can. J. Earth Sci., 1989, vol. 26, pp. 1533–1556.

    Article  Google Scholar 

  • Shumlyansky, L.V., Geochemistry of pyroxene plagioclase gneisses (enderbites) of the Bug area and Hf isotope com position in zircons, Miner. Zh., 2012, vol. 34, no. 2, pp. 64–79.

    Google Scholar 

  • Skublov, S.G., Berezin, A.V., and Berezhnaya, N.G., General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian mobile belt, Petrology, 2012, vol. 20, pp. 427–449.

    Article  Google Scholar 

  • Tugarinov, A.I. and Bibikova, E.V., Geokhronologiya Baltiiskogo shchita (Geochronology of the Baltic Shield Based on Zircon Ages), Moscow: Nauka, 1980.

    Google Scholar 

  • Turkina, O.M., Urmantseva, L.N., Berezhnaya, N.G., and Skublov, S.G., Formation and Mesoarchean metamorphism of hyperstene gneisses from the Irkut granulite–gneiss block, Russ. Geol. Geophys., 2011, no. 1, pp. 122–137.

    Google Scholar 

  • Valley, P.M., Fischer, C.M., Hanchar, J.M., Lam, R., and Tubrett, M., Hafnium isotopes in zircon: a tracer of fluidrock interaction during magnetite–apatite “(Kiruna-type)” mineralization, Chem. Geol., 2010, vol. 275, pp. 208–220.

    Article  Google Scholar 

  • Vavra, G., Schmid, R., and Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphiboliteto-granulite facies zircons: geochronology of the Ivrea zone (Southern Alps), Contrib. Mineral. Petrol., 1999, no. 134, pp. 380–404.

    Article  Google Scholar 

  • Whitehouse, M.J. and Platt, J.P., Dating high-grade metamorphism— constraints from rare-earth elements in zircon and garnet, Contrib. Mineral. Petrol., 2003, vol. 145, pp. 61–74.

    Article  Google Scholar 

  • Wielicki, M.M. and Harrison, T.M., Ti-in-zircon thermometry and trace element geochemistry of impact produced zircons: implications for Hadean zircons, Lunar Planet. Sci. Conf., 2011, vol. 42, Abstract 2346.

  • Wielicki, M.M., Harrison, T.M., and Schmitt, A.K., Geochemical signatures and magmatic stability of terrestrial impact produced zircon, Earth Planet. Sci. Lett., 2012, vol. 321–322, pp. 20–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Lobach-Zhuchenko.

Additional information

Original Russian Text © S.B. Lobach-Zhuchenko, T.V. Kaulina, K.I. Lokhov, Yu.S. Egorova, S.G. Skublov, O.L. Galankina, A.V. Antonov, 2016, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2016, No. 4, pp. 1–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobach-Zhuchenko, S.B., Kaulina, T.V., Lokhov, K.I. et al. Isotopic-Geochemical Features of Zircon and Its Significance for Reconstructing the Geological History of Paleoarchean Granulites in the Ukrainian Shield. Geol. Ore Deposits 59, 663–676 (2017). https://doi.org/10.1134/S1075701517080062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517080062

Keywords

Navigation