Skip to main content
Log in

Tveitite-(Y) and REE-enriched fluorite from amazonite pegmatites of the Western Keivy, Kola Peninsula, Russia: Genetic crystal chemistry of natural Ca,REE-fluorides

  • Minerals and Parageneses of Minerals
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Tveitite-(Y) as pods up to 10 cm across has been found at Mt. Rovgora, the Western Keivy, Kola Peninsula, Russia, in an albite-quartz-amazonite pegmatite vein related to alkaline granite. Tveitite-(Y) grains (up to 4 cm) are parallel microintergrowths of two isostructural varieties, Ca9.5Na1.7Y5.2Ln2.0F42.6 and Ca11.4Na1.9Y4.4Ln1.4F42.0. The idealized structural formula (Z = 3) is (Y, Na)6(Ca, LREE)6(Ca, Na, HREE)6(Ca, Na)F42; the simplified formula is (Ca, REE, Na)13(Y, Na)6F42; space group R \( \bar 3 \) a = 17.020, c = 9.679 Å. [Lanthanoides are abbreviated in this paper as Ln, whereas Ln + Y as REE]. Nine fluorite samples containing from 0 to 18 mol % (REE)F3 were examined by electron microprobe, X-ray powder diffraction, and IR spectroscopy. The crystal structure of natural yttrofluorite has been determined for the first time (R aniso = 1.47 %): Fm3m, a = 5.493 Å; the structural formula is (Ca0.82Y0.12Ln0.06)F2.15. Earlier published and new data show that yttrofluorite containing (REE)F3 > 20 mol % and REE-enriched fluorite with LREE > Y (HREE) are metastable under room conditions. In nature, tveitite-(Y) is a product of solid-state transformation of metastable yttrofluorite with (REE)F3 > 20 mol %. Inferred protophases could have been exsolved into tveitite-(Y) variable in composition or tveitite-(Y) + yttrofluorite stable under normal conditions. The formation of tveitite-(Y) requires the erichment of a protophase not only in Y but also in LREE and HREE as stabilizing admixtures regularly distributed by different types of Ca-dominant structural sites. Tveitite-(Y) and yttrofluorite are geochemical indicators of a medium that is not only enriched in Y, Ln, and F, but also depleted in Na, Ca, CO2 and P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Aleksandrov and L. S. Garashina, “New Data on the Structures of CaF2-(REE)F3 Solid Solutions,” Dokl. Akad. Nauk SSSR 189(2), 307–310 (1969).

    Google Scholar 

  2. V. V. Arkhangel’skaya, “Structure of Breakdown of Solid Solution in Natural Rare Earth Fluorite,” Dokl. Akad. Nauk SSSR 195(6), 1411–1414 (1970).

    Google Scholar 

  3. I. V. Bel’kov, “Yttrium Mineralization in Amazonite Pegmatites of Alkali Granites of the Kola Peninsula,” Voprosy Geol. Mineral. Kol’sk. P-ova, No. 1, 126–139 (1958).

  4. S. Bergstøl, B. B. Jensen, and H. Neumann, “Tveitite, a New Calcium Yttrium Fluoride,” Lithos 10, 81–87 (1977).

    Article  Google Scholar 

  5. J. P. Besse and M. Capestan, “Solutions Solides de CeF3 Dans Quelques Fluorides Divalents Type Fluorine,” Bull. Soc. Chim. France, 1341–1344 (1967).

  6. D. J. M. Bevan, M. J. McCall, S. E. Ness, and M. R. Taylor, “Cuboctahedral Anion Clusters in Fluoride-Related Superstructures: The Crystal Structure of Ca2YbF7,” Eur. J. Solid State Chem. 25, 517–526 (1988).

    Google Scholar 

  7. D. J. M. Bevan, J. Strähle, and O. Greis, “The Crystal of Tveitite, an Ordered Yttrofluorite Mineral,” J. Solid. State Chem. 44, 75–81 (1982).

    Article  Google Scholar 

  8. A. K. Cheetam, B. E. F. Fender, and M. J. Cooper, “Defect Structure of Calcium Fluoride Containing Excess Anions: I. Bragg Scattering,” J. Physics C. 7, 3107–3121 (1971).

    Article  Google Scholar 

  9. A. M. Clark, Hey’s Mineral Index, 3rd Ed. (London, 1993).

  10. W. W. Crook, the Third, “Tveitite from Barringer Hill District, Texas,” Miner. Record. 9(6), (1978).

  11. A. M. Golubev, “The Fifth Rombohedral Modification of Fluorite-Type Superstructures Set from Clusters M8R9F69,” Koord. Khim. 19(12), 939–943 (1993).

    Google Scholar 

  12. N. B. Grigor’eva, B. A. Maksimov, L. P. Otroshchenko, B. P. Sobolev, and V. I. Simonov, “X-Ray Study of Nonstoichiometric Fluorite-Type Ca0.65Nd0.35F2.35 Single Crystals,” Kristallografiya 43(4), 601–604 (1998) [Crystallogr. Rep. 43 (4), 553–556 (1998)].

    Google Scholar 

  13. N. B. Grigor’eva, L. P. Otroshchenko, B. A. Maksimov, E. A. Zhurova, B. P. Soboleva, and V. I. Simanov, “X-Ray Study of Single Crystals of the Solid Solution Ca0.65Ho0.35F2.35 with the Modified Fluorite Structure,” Kristallografiya 41(1), 60–64 (1996a).

    Google Scholar 

  14. N. B. Grigor’eva, L. P. Otroshchenko, B. A. Maksimov, I. A. Verin, B. P. Soboleva, and V. I. Simanov, “X-Ray Study of Ca0.65La0.35F2.35 and Ca0.80Yb0.20F2.20 Crystals: Two Types of Modified Fluorite Structure,” Kristallografiya 41(4), 644–650 (1996b) [Crystallogr. Rep. 41 (4), 607–613 (1996b).

    Google Scholar 

  15. C. V. Haynes, “Genesis of the White Cloud and Related Pegmatites, South Platte Area, Jefferson County, Colorado,” Geol. Soc. Am. Bull. 76, 441–461 (1965).

    Article  Google Scholar 

  16. J. M. Hughes and J. W. Drexler, “Refinement of the Structure of Gagarinite-(Y), Nax[Cax(Y, REE)2 − x ] F6,” Canad. Miner. 32, 563–565 (1994).

    Google Scholar 

  17. A. P. Kalita, Pegmatites and Hydrotermally Altered Rock of Alkali Granites of the Kola Peninsula (Moscow, 1974) [in Russian].

  18. J. P. Laval, A. Abaouz, B. Frit, and A. Le Bail, “Short-Range Order in the Anion-Excess Fluorite-Related Ca0.68Ln0.32F2.32 Solid Solutions: EXAFS Study of the Ln3+ Environment,” J. Solid State Chem. 85, 133–143 (1990).

    Article  Google Scholar 

  19. A. Ya. Lunts, Mineralogy, Geochemistry, and Genesis of Rare Earth Pegmatites of the Northeastern USSR (Moscow, 1972) [in Russian].

  20. H. Neumann, Norges Mineraler (Norges Geol. Undersøkelse Skrifter, 1985), Vol. 68.

  21. I. V. Pekov, N. V. Chukanov, O. V. Eletskaya, A. P. Khomyakov, and Yu. P. Men’shikov, “Belovite-(Ce): New Data, Specified Formula, and Correlation with Other Minerals of Apatite Group,” Zap. Vseross. Mineral. O-va 124(2), 98–110 (1995).

    Google Scholar 

  22. J. Short and R. Roy, “Confirmation of Defect Character in Calcium Fluoride: Yttrium Fluoride Crystalline Solution,” P. Phys. Chem. 67, 1860–1861 (1963).

    Article  Google Scholar 

  23. N. A. Solodov, T. Yu. Usova, E. D. Osokin, V. N. Pavlova, E. I. Semenov, M. B. Skosyreva, Yu. P. Solodova, M. V. Torikova, and A. E. Tsyganov, Nontraditional Types of Rare-Metal Mineral Resources (Moscow, 1991) [in Russian].

  24. T. L. Sverdrup, “Yttrofluorite-Yttrocerite-Cerfluorite in Norwegian Pegmatites,” Norsk Geol. Tidsskr 48, 245–252 (1968).

    Google Scholar 

  25. K. Uetani, Y. Ogimura, A. Kato, and K. Nagashima, “Chemical Studies of Minerals Containing Rare Elements from the Far East District LXI. Yttrofluorite from Suishoyama, Kawamatamachi, Fukushima Prefecture, Japan,” Bull. Chem. Soc. Japan. 41, 603–605 (1968).

    Article  Google Scholar 

  26. A. M. Vetoshkina, V. V. Gordienko, N. A. Elina, and L. I. Polezhaeva, “Yttroflyuorine and Accompanying Rare Earth Minerals from Amazonite Pegmatites at Mount Ploskaya, Kola Peninsula,” Miner. Zh. 2(4), 51–57 (1980).

    Google Scholar 

  27. T. Vogt, “Vorlaufige Mitteilung über Yttrofluorit, eine neue Mineralspezies aus dem nördlichen Norwegen,” Centralblatt F. Min. etc., No. 12, 373–377 (1911).

  28. A. V. Voloshin and Ya. A. Pakhomovsky, Minerals and Evolution of Mineral Formation in the Amazonite Pegmatites of the Kola Peninsula (Leningrad, 1986) [in Russian].

  29. R. C. Wang, F. Fontan, X. M. Chen, H. Hu, C. S. Liu, S. J. Xu, and P. de Parseval, Accessory Minerals in the Xihuashan Y-Enriched Granitic Complex, Southern China: A Record of Magmatic and Hydrothermal Stages of Evolution,” Canad. Miner. 41, 727–748 (2003).

    Article  Google Scholar 

  30. O. V. Yakubovich, V. Massa, I. V. Pekov, and P. G. Gavrilenko, “Crystal Structure of Tveitite-(Y): Fractionation of Rare-Earth Elements between Sites and Various Defects,” Kristallografiya 52(1), 71–79 (2007) [Crystallogr. Rep. 52 (1), 71–79 (2007)].

    Google Scholar 

  31. V. N. Zuev and A. V. Kosterin, “Ittrofluorine from Deposits of Central Asia,” Tr. Inst. Mineral. Geokhim. Red. Element., No. 4, 136–138 (1960).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pekov.

Additional information

Original Russian Text © I.V. Pekov, N.V. Chukanov, N.N. Kononkova, O.V. Yakubovich, W. Massa, A.V. Voloshin, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, Pt. CXXXVII, No. 3, pp. 76–93.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekov, I.V., Chukanov, N.V., Kononkova, N.N. et al. Tveitite-(Y) and REE-enriched fluorite from amazonite pegmatites of the Western Keivy, Kola Peninsula, Russia: Genetic crystal chemistry of natural Ca,REE-fluorides. Geol. Ore Deposits 51, 595–607 (2009). https://doi.org/10.1134/S1075701509070083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509070083

Keywords

Navigation