Skip to main content
Log in

Fluorite in Ores of the Saf’yanovka Massive Sulfide Deposit, Central Urals: Assemblages, Composition, and Genesis

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The article presents the results of a comparative analysis of fluorite from various mineralization types of the Saf’yanovka massive sulfide deposit in the Central Urals. The predominant green fluorite is intergrown with barite, quartz, and carbonates in hydrothermal colloform and massive pyrite, veinlet–disseminated chalcopyrite–pyrite–sphalerite and pyrite–chalcopyrite ores, as well as in hydrothermally altered rhyolite. In colloform pyrite ore, fluorite together with galena, sphalerite, chalcopyrite, fahlore, and barite fills interstices between crystals. In altered rhyolite, yellow-green fluorite occurs as veins of 1 cm thick, 2–3 cm pockets, and intergrowths with quartz, carbonate, and barite. The rare-earth element (REE) and yttrium concentrations have been determined by ICP-MS. The highest Y content (160 ppm) is measured in fluorite from metasomatic rock; the intermediate Y content (40–130 ppm) is determined in fluorite from pyrite ore, and the lowest one (4–9 ppm) is typical of fluorite from chalcopyrite–pyrite–sphalerite and chalcopyrite ore. The total REE content in fluorite is 70–150 ppm (chalcopyrite–pyrite–sphalerite and chalcopyrite ore), 100–280 ppm in pyrite ore, and reaches 180 ppm in altered rhyolites. The highest REE concentration is caused by the presence of xenotime, goyazite, monazite, barite or apatite inclusions in fluorite. The Tb/La and Tb/Ca ratios suggest that fluorite resulted from hydrothermal processes. The REE distribution patterns with an evident Eu anomaly (Eu/Eu* > 1) show enrichment in LREE. Positive Eu anomalies reflect the high-temperature conditions (≥250°C) during fluorite crystallization. The pressure-corrected (~100–150 bar) temperature of fluorite formation is 190–260°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Report on prospecting work to assess the economic significance of the Kamenskaya Safyanovskaya copper ore zone of the East Ural basin OJSC SUGRE.

REFERENCES

  1. Alipour, S., Abedini, A., and Talaei, B., Geochemical characteristics of the Qahr–Abad fluorite deposit, southeast of Saqqez, western Iran, Arab. J. Geosci., 2014, vol. 8, no. 9, pp. 7309–7320. https://doi.org/10.1007/s12517-014-1747-6

    Article  Google Scholar 

  2. Bau, M. and Möller, P., Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite, Mineral. Petrol., 1992, no. 45, pp. 231–246. https://doi.org/10.1007/BF01163114

  3. Bau, M., Romer, R.L., Lüders, V., and Dulski, P., Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr–Nd–Pb isotopes in fluorite from MVT deposits in the Pennine orefield, England, Miner. Deposita, 2003, no. 38, pp. 992–1008. https://doi.org/10.1007/s00126-003-0376-x

  4. Bauer, D., Diamond, D., Li, J., Sandalow, D., Telleen, P., and Wanner, B.U.S., Department of Energy Critical Materials Strategy, 2010. https://doi.org/10.2172/1000846

  5. Bischoff, J.L. and Rosenbauer, R.J., The critical point and two-phase boundary of seawater, 200–500°C, Earth Planet. Sci. Lett., 1984, vol. 68, no. 1, pp. 172–180. https://doi.org/10.1016/0012-821X(84)90149-3

    Article  Google Scholar 

  6. Borisenko, A.S., Cryometric study of salt composition of solutions from gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–28.

  7. Bortnikov, N.S., Simonov, V.A., and Bogdanov, Yu.A., Fluid inclusions in minerals from modern sulfide edifices: physicochemical conditions of formation and evolution of fluids, Geol. Ore Deposits, 2004, vol. 46, no. 1, pp. 64–75.

    Google Scholar 

  8. Bortnikov, N.S., Simonov, V.A., Amplieva, E.E., Stavrova, O.O., and Fouquet, Y., The physicochemical conditions of hydrothermal ore-forming systems of “black smokers” associated with mantle ultrabasites in the central Atlantic region, Russ. Geol. Geophys., 2011, vol. 52, no. 11, pp. 1412–1420.

    Article  Google Scholar 

  9. Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation, Chem. Geol., 1980, vol. 28, pp. 199–260. https://doi.org/10.1016/0009-2541(80)90047-9

    Article  Google Scholar 

  10. Coşanay, P., Kırat, E., Çevik, N., Kızılkanat, C., Mutlu, H., and Koç, S., Geochemical, microthermometric, and isotopic constraints on the origin of fluorite deposits in central Anatolia, Turkey, Turk. J. Earth Sci., 2017, vol. 26, pp. 206–226. https://doi.org/10.3906/yer-1701-13

    Article  Google Scholar 

  11. Deng, X.H., Chen, Y.J., Yao, J.M., Bagas, L., and Tang, H.S., Fluorite REE–Y (REY) geochemistry of the ca. 850 Ma Tumen molybdenite–fluorite deposit, eastern Qinling, China: constraints on ore genesis, Ore Geol. Rev., 2014, vol. 63, pp. 532–543. https://doi.org/10.1016/j.oregeorev.2014.02.009

    Article  Google Scholar 

  12. Dill, H.G. and Weber, B., Variation of color, structure and morphology of fluorite and the origin of the hydrothermal F–Ba deposits at Nabburg Wölsendorf, SE Germany, J. Mineral. Geochem., 2010, vol. 187, no. 2, pp. 113–132. https://doi.org/10.1127/0077-7757/2010/0169

    Google Scholar 

  13. Dill, H.G., Hansen, B.T., and Weber, B., REE contents, REE minerals and Sm/Nd isotopes of granite– and unconformity–related fluorite mineralization at the western edge of the bohemian massif: with special reference to the Nabburg–Wolsendorf district, Se Germany, Ore Geol. Rev., 2011, vol. 40, pp. 132–148. https://doi.org/10.1016/j.oregeorev.2011.06.003

    Article  Google Scholar 

  14. Faiziev, A.R., Yttrium in fluorite from endogenous occurrences of the USSR, Geokhimiya, 1989, no. 7, pp. 1037–1042.

  15. Field, C.W., Zhang, L., Dilles, J.H., Rye, R.O., and Reed, M.H., Sulfur and oxygen isotopic record in sulfate and sulfide minerals of early, deep, pre-main stage porphyry Cu–Mo and late main stage base–metal mineral deposits, Butte District, Montana, Chem. Geol., 2005, vol. 215, pp. 61–93. https://doi.org/10.1016/j.chemgeo.2004.06.049

    Article  Google Scholar 

  16. Ganzeev, A.A. and Sotskov, Yu.P., Rare-earth elements in fluorite, Geokhimiya, 1976, no. 3, pp. 390–395.

  17. Genç, Y., Genesis of the Neogene interstratal karst-type Pohrenk fluorite–barite (±lead) deposit (Kırşehir, central Anatolia, Turkey), Ore Geol. Rev., 2006, no. 29, pp. 105–117. https://doi.org/10.1016/j.oregeorev.2005.11.005

  18. Grinenko, V.A., Ustinov, V.I., and Grinenko, L.N., Formation conditions of sulfide–sulfate assemblages in hydrothermal deposits: isotopic and fluid inclusion constraints, Geochem. Int., 2008, vol. 46, no. 9, pp. 945–950.

    Article  Google Scholar 

  19. Gusev, A.I., On geochemistry of fluorite of Gornyi Altai, Usp. Sovrem. Estestvozn., 2013, no. 11, pp. 103–107.

  20. Halbach, P.E., Tunnicliffe, V., and Hein, J.R., Energy and mass transfer in marine hydrothermal systems, 89th Dahlem Workshop, Berlin, 2003.

  21. Hongo, Y. and Nozaki, Y., Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa trough, Geochem. J., 2001, vol. 35, pp. 347–354. https://doi.org/10.2343/geochemj.35.347

    Article  Google Scholar 

  22. Kolchedannye mestorozhdeniya SSSR (Sulfide Deposits of the USSR), Bogdanova, E.I., Ivanov, S.N., Kuritsyna, G.A., Moscow: Nauka, 1983.

  23. Kontar’, E.S., Lead and zinc deposits in the crustal evolution, Litosfera, 2016, no. 3, pp. 5–26.

  24. Koroteev, V.A., Yazeva, R.G., Bochkarev, V.V., Moloshag, V.P., Korovko, A.V., and Sheremet’ev, Yu.S., Geologicheskoe polozhenie i sostav sul’fidnykh rud Saf’yanovskogo mestorozhdeniya (Srednii Ural) (Geological Position and Composition of Sulfide Ores of the Saf’yanovskoe Deposit, Middle Urals), Yekaterinburg: IGG UrO RAN, 1997.

  25. Korovko, A.V., Grabezhev, A.I., and Dvoeglazov, D.A., Metasomatic aureole of the Saf’yanovskoe zinc–copper deposit, Middle Urals, Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 3, pp. 692–695.

    Google Scholar 

  26. Lesnov, F.P., Geochemistry of rare-earth elements in plagioclase, Russ. Geol. Geophys., 2001, no. 6, pp. 917–936.

  27. Mao, M., Simandl, G.J., Spence, J., Neetz, M., and Marshall, D., Trace element composition of fluorite and its potential use as an indicator in mineral exploration, Geological Fieldwork, British Columbia Geol. Surv. Pap., 2015, no. 2016-1, pp. 181–206.

  28. Marfunin, A.S., Spektroskopiya, lyuminestsentsiya i radiatsionnye tsentry v mineralakh (Spectroscopy, Luminescence, and Radiation Centers in Minerals), Moscow: Nedra, 1975.

  29. Markin, S.A., Simandl, G.J., and Marshall, D., Fluorite and its potential as an indicator mineral for carbonatite-related rare earth element deposits, Geological Fieldwork, British Columbia Geol. Surv. Pap., 2013, no. 2014-1, pp. 207–212.

  30. Maslennikov, V.V., Litogenez i kolchedanoobrazovanie (Lithogenesis and Sulfide Formation), Miass: IMin UrO RAN, 2006.

  31. Maslennikov, V.V., Ayupova, N.R., Maslennikova, S.P., Tret’yakov, G.A., and Melekestseva, I.Yu., Safina, N.P., Belogub. E.V., Larzh, R.R., Danyushevsky, L.V., Tseluiko, A.S., Gladkov, A.G., and Krainev, Yu.D., Toksichnye element v kolchedanoobrazuyushchikh sistemakh (Toxic Elements in Sulfide-Forming Systems), Yekaterinburg: RIO UrO RAN, 2014.

    Google Scholar 

  32. Maslennikova, S.P. and Maslennikov, V.V., Sul’fidnye truby paleozoiskikh “chernykh kuril’shchikov” (na primere Urala) (Sulfide Pipes of the Paleozoic “Black Smokers” with Reference to the Urals), Ekaterinburg–Miass: UrO RAN, 2007.

  33. McDonough W.F., Sun, S.-S. The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

  34. Mednokolchedannye mestorozhdeniya Urala: Usloviya formirovaniya (Copper Sulfide Deposits of the Urals: Conditions of Formation), Prokin, V.A., Seravkin, I.B., Buslaev, F.P., et al., Yekaterinburg: UrO RAN, 1992.

  35. Mills, R.A. and Elderfield, H., Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26oN Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 17, pp. 3511–3524. https://doi.org/10.1016/0016-7037(95)00224-N

    Article  Google Scholar 

  36. Möller, P., Parekh, P.P., and Schneider, H.J., The application of Tb/Ca–Tb/La abundance ratios to problems of fluorspar genesis, Miner. Deposita, 1976, vol. 11, pp. 111–116. https://doi.org/10.1007/BF00203098

    Article  Google Scholar 

  37. Moloshag, V.P., Grabezhev, A.I., Vikent’ev, I.V., and Gulyaeva, T.Ya., Ore facies of sulfide deposits and sulfide ores of the copper–gold–porphyry deposits of the Urals, Litosfera, 2004, no. 2, pp. 30–51.

  38. Murzin, V.V., Safina, N.P., and Moloshag, V.P., Sulfur isotope composition of minerals and H2S of fluid of the barite–sulfide veins of the Saf’yanovskoe copper sulfide deposit, Middle Urals, Ezhegodnik–2010, Tr. IGG UrO RAN, 2011, vol. 158, pp. 119–121.

    Google Scholar 

  39. Ohmoto, H. and, Rye, R.O., Isotopes of sulfur and carbon, Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Eds., Wiley and Sons, 1979, pp. 509–567.

    Google Scholar 

  40. Pichavant, M., Ramboz, C., and Weisbrod, A., Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. I. Phase equilibria analysis – a theoretical and geometrical approach, Chem. Geol., 1982, vol. 37, pp. 1–27.

    Article  Google Scholar 

  41. Popov, M.P. and Erokhin, Yu.V., Typomorphic features of fluorite of the Mariinskoe beryllium deposit, Uralian emerald pits, Litosfera, 2010, no. 4, pp. 157–162.

  42. Potter, R. W., Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl–H2O, U.S. Geol. Surv. J. Res., 1977, vol. 5, pp. 603–607.

    Google Scholar 

  43. Puchkov, V.N., Paleooceanic structures of the Urals, Geotektonika, 1993, no. 3, pp. 18–34.

  44. Rajabzadeh, M.A., A fluid inclusion study of a large MVT barite–fluorite deposit: Komshecheh, Central Iran, Iran. J. Sci. Technol., 2007, no. 31, pp. 73–87. https://doi.org/10.22099/ijsts.2007.2318

  45. Roedder, E., Fluid inclusions: Rev. Mineral., Mineral. Soc. Am., 1984, vol. 12.

    Book  Google Scholar 

  46. Safina, N.P., Melekestseva, I.Yu, Nimis, P., Ankusheva, N.N., Yuminov, A.M., Kotlyarov, V.A., and Sadykov, S.A., Barite from the Saf’yanovka VMS deposit (Central Urals) and Semenov-1 and Semenov-3 hydrothermal sulfide fields (Mid-Atlantic Ridge): a comparative analysis of formation conditions, Miner. Deposita, 2016, vol. 51, no. 4, pp. 491–507. https://doi.org/10.1007/s00126-015-0617-9

    Article  Google Scholar 

  47. Sánchez, V., Cardellach, E., Corbella, M., Vindel, E., Martín-Crespo, T., and Boyce, A.J., Variability in fluid sources in the fluorite deposits from Asturias (N Spain): further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data, Ore Geol. Rev., 2010, no. 37, pp. 87–100. https://doi.org/10/1016/j.oregeorev.2009.12.001

  48. Simonov, V.A., Kovyazin, S.V., Terenya, E.O., Maslennikov, V.V., Zaikov, V.V., and Maslennikova, S.P., Physicochemical Parameters of Magmatic and Hydrothermal Processes at the Yaman-Kasy Massive Sulfide Deposit, the Southern Urals, Geol. Ore Deposits, 2006, vol. 48, no. 5, pp. 369–383.

    Article  Google Scholar 

  49. Soroka, E.I., Moloshag, V.P., and Petrishcheva, V.G., Aluminous mineral assemblage with alunite in the ore-bearing rocks of the Saf’yanovskoe copper sulfide deposit, Middle Urals, Litosfera, 2010, no. 6, pp. 112–119.

  50. Soroka, E.I., Pritchin, M.E., Lyutoev, V.P., and Smoleva, I.V., Physicochemical studies of carbonates of the Saf’yanovskoe copper sulfide deposit, Middle Urals, Vestn. Permsk. Univ., 2019, vol. 18, no. 2, pp. 152–164.

    Google Scholar 

  51. Urusov, V.S., Limits of isomorphic substitutions and therobarometry, Geokhimiya, 1978, no. 4, pp. 531–546.

  52. Vikent’ev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Conditions of Formation and Metamorphism of Sulfide Ores), Moscow: Nauchnyi mir, 2004.

  53. Vikent’ev, I.V., Parameters of hydrothermal fluids for nondeformed sulfide deposits of the Urals, Mineral. Sb., 2012, vol. 62, no. 2, pp. 47–58.

    Google Scholar 

  54. Volchek, E.N. and Necheukhin, V.M., Features of formation of the Eastern Segment of the Uralian Paleozoic orogeny under accretion and collision settings, Litosfera, 2014, no. 6, pp. 45–53.

  55. Werner, R.A. and Brand, W.A., Referencing strategies and techniques in stable isotope ratio analysis, Rapid Commun. Mass Spectrom., 2001, vol. 15, pp. 501–519.| https://doi.org/10.1002/rcm.258

    Article  Google Scholar 

  56. Wilkinson, J.J., Fluid inclusions in hydrothermal ore deposits, Lithos, 2001, vol. 55, pp. 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5

    Article  Google Scholar 

  57. Yang, Y., Rusakov, V.Yu., and Kuz’mina, T.G., Rare earth elements in the ore-bearing sediments of the Krasnov and Semenov hydrothermal fields, Mid-Atlantic ridge, Geochem. Int., 2016, vol. 54, no. 3, pp. 280–292.

    Article  Google Scholar 

  58. Yaroslavtseva, N.S., Maslennikov, V.V., Safina, N.P., Leshchev, N.V., and Soroka, E.I., Carbonaceous silty pelites of the Saf’yanovskoe copper–zinc–sulfide deposit, Middle Urals, Litosfera, 2012, no. 2, pp. 106–125.

  59. Yazeva, R.G., Moloshag, V.P., and Bochkarev, V.V., Geology and ore parageneses of the Saf’yanovskoe sulfide deposit in the Middle Uralian thrust nappe, Geol. Rud. Mestorozhd., 1991, vol. 33, no. 4, pp. 47–58.

    Google Scholar 

  60. Zakis, A.S. and Belogub, E.V., “Unusual druse mineralization at the Aleksandrinskoe copper–zinc–sulfide deposits (South Urals),” Metallogeniya drevnikh i sovremennykh okeanov—2000 (Metallogeny of Ancient and Modern Oceans—2000), Miass: IMin UrO RAN, 2000, pp. 145–148.

Download references

ACKNOWLEDGMENTS

We thank N.V. Leshchev, chief geologist of OAO Saf’yanmed for his assistance in field work; E.V. Belogub and M.E. Pritchin for the samples kindly placed at our disposal; L.V. Leonova for analytical study; and I.Yu Melekestseva for discussion of the results obtained.

Funding

This study was supported under a state task (state registration no. AAAA-A19-119061790049-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Safina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safina, N.P., Soroka, E.I., Ankusheva, N.N. et al. Fluorite in Ores of the Saf’yanovka Massive Sulfide Deposit, Central Urals: Assemblages, Composition, and Genesis. Geol. Ore Deposits 63, 118–137 (2021). https://doi.org/10.1134/S1075701521020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521020057

Keywords:

Navigation