Skip to main content
Log in

New Data on the Age and Genesis of the Newania Carbonatite Complex, Rajasthan, India

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents newly acquired geochemical and mineralogical data on carbonatites and fluorapatite of the Newania intrusive complex, India. A magmatic−metamorphic hypothesis is proposed to explain the origin of this complex. The Newania carbonatites are comparable to the average composition of ferro- and magnesiocarbonatites worldwide in terms of Ca, Fe, Mg, Mn, Na, K, Al, Ti, P, and Sr contents but is depleted in Ba, Ta, Zr, Th, and REE. Fluorapatite and monazite-(Ce) are the main P, Sr, Th, and REE concentrators in the rocks, whereas U is concentrated mostly in U-rich pyrochlore. The major chemical changes in the fluorapatite can be described in a generalized form by the following reaction: REE3+ + Na+ ↔ 2Ca2+. The fluorapatite is relatively poor in radioactive elements and contains no more than 0.2 wt %, ThO2, no more than 1–2 ppm U, the LREE content varies from 1000 to 5000 ppm (Ce > Nd > La), and the HREE content does not exceed 300 ppm. The early magmatic fluorapatite was replaced by monazite-(Ce) due to its recrystallization and redistribution of REE and Th. The late generations of Fe-rich dolomite, fluorapatite, magnetite, and siderite, monazite-(Ce), U-rich pyrochlore, calcite, and graphite may have crystallized under amphibolite metamorphic facies at temperatures close to 600°C. According to the age of the fluorapatite and zircon, the dolomite carbonatites were emplaced into the host granite-gneisses at 2120 Ma, and the transformation of the mineral assemblages and the crystallization of the U-rich pyrochlore occurred at 900 Ma in the course of metamorphic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. V. Afanasev, Mineral Resources of the Alkaline–Ultrabasic Massifs of the Kola Peninsula (Roza vetrov, St. Petersburg, 2011) [in Russian].

  2. A. Antignano and C. E. Manning, “Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900°C and 0.7 to 2.0 GPa,” Chem. Geol. 251, 112–119 (2008).

    Article  Google Scholar 

  3. C. Antoine, E. Bruand, M. Guitreau, and J.-L. Devidal, “Understanding preservation of primary signatures in apatite by comparing matrix and zircon-hosted crystals from the Eoarchean Acasta Gneiss Complex (Canada),” Geochem., Geophys., Geosyst. 21, e2020GC008923 (2020). https://doi.org/10.1029/2020GC008923

  4. A. Banerjee, M. Satish-Kumar, and R. Chakrabarti, “Sulfur, carbon and oxygen isotopic compositions of Newania carbonatites of India: implications for the mantle source characteristics,” J. Mineral. Petrol. Sci. 116 (3), 121–128 (2021).

    Article  Google Scholar 

  5. L. Beccaluva, G. Bianchini, C. Natali, and F. Siena, “The alkaline–carbonatite complex of Jacupiranga (Brazil): magma genesis and mode of emplacement,” Gondwana Res. 44, 157–177 (2017).

    Article  Google Scholar 

  6. K. Bell, Carbonatites: Genesis and Evolution (Unwin Hyman, London, 1989).

    Google Scholar 

  7. K. Bell and A. S. Rukhlov, “Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics,” Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province, Ed. by F. Wall and A. N. Zaitsev, Mineral. Soc. Ser. 10, 433–468 (2004).

  8. E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. I. Fisher, “Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type,” J. Geochem. Explor. 76, 45–69 (2002).

    Article  Google Scholar 

  9. L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and C. Foudoulis, “Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 115–140 (2004).

    Article  Google Scholar 

  10. K. Bucher and M. Grapes, Petrogenesis of Metamorphic Rocks (Springer–Verlag, Berlin–Heidelberg, 2011).

    Book  Google Scholar 

  11. A. R. Chakhmouradian, E. P. Reguir, A. N. Zaitsev, C. Couëslan, C. Xue, J. Kynický, A. H. Mumin, and P. Yang, “Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance,” Lithos 274–275, 188–213 (2017).

    Article  Google Scholar 

  12. W. Chen and A. Simonetti, “Evidence for the multistage petrogenetic history of the Oka carbonatite complex (Quebec, Canada) as recorded by perovskite and apatite,” Minerals 4, 437–476 (2014).

    Article  Google Scholar 

  13. W. Chen, H. Honghui, T. Bai, and S. Jiang, “Geochemistry of monazite within carbonatite related REE deposits,” Resources 6, 51 (2017).

    Article  Google Scholar 

  14. A. K. Choudhary, K. Gopalan, and C. A. Sastry, “Present status of geochronology of the Precambrian rocks of Rajasthan,” Tectonophysics 105, 131–140 (1984).

    Article  Google Scholar 

  15. R. Cochrane, R. A. Spikings, D. Chew, J.-F. Wotzlaw, M. Chiaradia, S. Tyrrell, U. Schaltegger, and van der Lelij R., “High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite,” Geochim. Cosmochim. Acta 127, 39–56 (2014).

    Article  Google Scholar 

  16. A. R. Crawford, “The Precambrian geochronology of Rajasthan and Bundelkhand, northern India,” Can. J. Earth Sci. 7, 91–110 (1970).

    Article  Google Scholar 

  17. T. Deans and J. L. Powell, “Trace elements and strontium isotopes in carbonatites, fluorites and limestones from India and Pakistan,” Nature 218, 750–752 (1968).

    Article  Google Scholar 

  18. A. G. Doroshkevich, G. Ripp, and S. Viladkar, “Newania carbonatite, western India: example of mantle derived magnesium carbonatites,” Mineral. Petrol. 98 (1–4), 283–295 (2010).

    Article  Google Scholar 

  19. G. Faure, Principles of Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  20. P. Golani and M. Pandit, “Evidence of epithermal activity and gold mineralization Newania carbonatite, Udaipur district, Rajasthan,” J. Geol. Soc. India 54, 251–257 (1999).

    Google Scholar 

  21. G. Gruau, C. Petibon, S. Viladkar, S. Fourcade, J. Bernard–Griffiths, and J. Mace, “Extreme isotopic signatures in carbonatites from Newania, Rajasthan,” Terra Nova. Abstr. Suppl. 7 (1), 336 (1995).

    Google Scholar 

  22. D. E. Harlov, “Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia Granite Pegmatite, Froland, Bamble Sector, southern Norway,” Miner. Petrol. 102, 77–86 (2011).

    Article  Google Scholar 

  23. D. E. Harlov, “Apatite: a fingerprint for metasomatic processes,” Elements 11 (3), 171–176 (2015).

    Article  Google Scholar 

  24. D. E. Harlov, R. Wirth, and H. J. Förster, “An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite,” Contrib. Mineral. Petrol. 150 (3), 268–286 (2005).

    Article  Google Scholar 

  25. I. A. Henrichs, G. O’Sullivan, D. M. Chew, C. Mark, M. G. Babechuka, C. McKenna, and R. Emoc, “The trace element and U-Pb systematics of metamorphic apatite,” Chem. Geol. 483, 218–238 (2018).

    Article  Google Scholar 

  26. K. Hollocher and J. Ruiz, “Major and trace element determinations on NIST glass standard reference materials 611, 612, 614 and 1834 by inductively coupled plasma-mass spectrometry,” Geostand. Newslett. 19 (1), 27–34 (1995).

    Article  Google Scholar 

  27. J. M. Hughes and J. F. Rakovan, “Structurally robust, chemically diverse: apatite and apatite supergroup minerals,” Elements 11, 165–170 (2015).

    Article  Google Scholar 

  28. T. R. Ireland and I. S. Williams, “Considerations in zircon geochronology by SIMS,” Rev. Mineral. Geochem. 53, 215–241 (2003).

    Article  Google Scholar 

  29. Yu. L. Kapustin, Mineralogy of Carbonatites (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  30. A. K. Kennedy, J. L. Crowley, M. D. Schmitz, and J. Wotzlaw, “SHRIMP apatite analysis and data reduction, Australia,” 6th International SHRIMP Workshop, 68–70 (2012).

  31. C. L. Kirkland, C Yakymchuk, K. Szilas, N. Evans, J. Hollis, B. McDonald, and N. J. Gardiner, “Apatite: a U-Pb thermochronometer or geochronometer?,” Lithos 318–319, 143–157 (2018).

    Article  Google Scholar 

  32. V. P. Kolotov, A. V. Zhilkina, V. I. Shirokova, N. N. Dogadkina, I. N. Gromyak, D. N. Dogadkin, A. M. Zybinskii, and D. A. Tyurin, “A new approach to sample mineralization in an open system for the analysis of geological samples by inductively coupled plasma mass spectrometry with improved performance characteristics,” J. Analyt. Chem. 75 (5), 569–581 (2020).

    Article  Google Scholar 

  33. P. Krishnamurthy, “Carbonatites of India,” J. Geol. Soc. India 94, 117–138 (2019).

    Article  Google Scholar 

  34. J. C. Kruger, R. L. Romer, and H. Kampf, “Late Cretaceous ultramafic lamprophyres and carbonatites from the Delitzsch complex, Germany,” Chem. Geol. 353, 140–150 (2013).

    Article  Google Scholar 

  35. Maitre R. W. Le, A. Streckeisen, B. Zanettin, Bas M. J. Le, B. Bonin, P. Bateman, G. Bellieni, A. Dudek, S. Efremova, J. Keller, J. Lameyre, and P. A. Sabine, “Igneous Rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks (Cambridge University Press, Cambridge, 2002).

    Book  Google Scholar 

  36. C. Leelanandam, K. Burke, L. D. Ashwal, and S. J. Webb, “Proterozoic mountain building in peninsular India: analysis based primarily on alkaline rock distribution,” Geol. Mag. 143, 195–212 (2006).

    Article  Google Scholar 

  37. K. Lodders, H. Palme, and H.-P. Gail, “Abundances of the elements in the Solar System,” Landolt-Bӧrnstein – Group VI Astronomy and Astrophysics (Springer–Verlag, Berlin–Heidelberg, 2009), pp. 712–770.

    Google Scholar 

  38. K. R. Ludwig, “SQUID 1.13a. A user’s manual. A geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ. 2, 1–19 (2005).

  39. K. R. Ludwig, “User’s manual for Isoplot/Ex, version 3.75. A geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ. 5, 1–71 (2012).

  40. Y. Luo, J. M. Hughes, J. Rakovan, and Y. Pan, “Site preference of U and Th in Cl, F, and Sr apatites,” Am. Mineral. 94, 345–351 (2009).

    Article  Google Scholar 

  41. P. L. McSwiggen, “Alternative solution model for the ternary carbonate system CaCO3–MgCO3–FeCO3. II. Calibration of a combined ordering model and mixing model,” Phys. Chem. Minerals. 20 (4), 42–55 (1993).

    Article  Google Scholar 

  42. L. J. Millonig, A. Gerdes, and L. A. Groat, “The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks,” Chem. Geol. 353, 199–209 (2013).

    Article  Google Scholar 

  43. R. H. Mitchell, “Carbonatites and carbonatites and carbonatites,” Can. Mineral. 43, 2049–2068 (2005).

    Article  Google Scholar 

  44. R. Mitchell, Th. Chudy, C. R. M. McFarlane, and F.‑Y. Wu, “Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks,” Lithos 286–287, 75–91 (2017).

    Article  Google Scholar 

  45. H. Palme and H. S. C. O’Neill, “Cosmochemical estimates of mantle composition,” In Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2014), pp. 1–39.

    Google Scholar 

  46. Y. Pan and M. E. Fleet, “Compositions of the apatite-group minerals: substitution mechanisms and controlling factors,” Rev. Mineral. Geochem. 48 (1), 13–49 (2002).

    Article  Google Scholar 

  47. M. K. Pandit and P. R. Golani, “Reappraisal of the petrologic status of Newania ‘carbonatite’ of Rajasthan, western India,” J. Asian Earth Sci. 19, 305–310 (2001).

    Article  Google Scholar 

  48. M. K. Pandit, A. N. Sial, D. Saxena, and V. P. Ferreira, “Nonmagmatic features in carbonatitic rocks: A reexamination of Proterozoic “carbonatites” southeast Rajasthan, northwest Indian craton,” Int. Geol. Rev. 42, 1046–1053 (2000).

    Article  Google Scholar 

  49. M. K. Pandit, A. N. Sial, G. B. Sukumaran, M. M. Pimentel, A. K. Ramasamy, and V. P. Ferreira, “Depleted and enriched mantle sources for Paleo-and Neoproterozoic carbonatites of southern India: Sr, Nd, C–O isotopic and geochemical constraints,” Chem. Geol. 189 (1–2), 69–89 (2002).

    Article  Google Scholar 

  50. M. Pasero, A. R. Kampf, C. Ferraris, I. V. Pekov, J. Rakovan, and T. J. White, “Nomenclature of the apatite supergroup minerals,” Europ. J. Mineral. 22, 163–179 (2010).

    Article  Google Scholar 

  51. D. Paul, J. Chandra, and M. Halder, “Proterozoic alkaline rocks and carbonatites of Peninsular India: a review,” Episodes. 43 (1), 249–277 (2020).

    Article  Google Scholar 

  52. J. E. Poletti, J. M. Cottle, G. A. Hagen-Peter, and J. S. Lackey, “Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California,” J. Petrol. 57 (8), 1555–1598 (2016).

    Google Scholar 

  53. K. Randive and T. Meshram, “An overview of the carbonatites from the Indian Subcontinent,” Open Geosci. 12 (1), 85–116 (2020).

    Article  Google Scholar 

  54. J. S. Ray, K. Pandey, R. Bhutani, A. D. Shukla, V. K. Rai, A. Kumar, N. Awasthi, R. S. Smitha, and D. K. Panda, “Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma,” Contrib. Mineral. Petrol. 166, 1613–1632 (2013).

    Article  Google Scholar 

  55. J. S. Ray, A. D. Shukla, and L. K. Dewangan, “Carbon and oxygen isotopic compositions of Newania dolomite carbonatites, Rajasthan, India: implications for source of carbonatites,” Mineral. Petrol. 98, 269–282 (2010).

    Article  Google Scholar 

  56. N. V. Rodionov, B. V. Belyatsky, A. V. Antonov, I. N. Kapitonov, and S. A. Sergeev, “Comparative in-situ U‒Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia,” Gondwana Res. 21, 728–744 (2012).

    Article  Google Scholar 

  57. A. B. Roy and S. R. Jakhar, Geology of Rajasthan (Northwest India): Precambrian to Recent (Scientific Publishers, Jodhpur, 2002).

    Google Scholar 

  58. O. G. Safonov, V. G. Butvina, E. V. Limanov, and S. A. Kosova, “Mineral indicators of reactions involving fluid salt components in the deep lithosphere,” Petrology 27 (5), 489–515 (2019).

    Article  Google Scholar 

  59. H. Schleicher, W. Todt, S. G. Viladkar, and F. Schmidt, “Pb/Pb age determinations on Newania and Sevathur carbonatites of India: evidence for multi-stage histories,” Chem. Geol. 140, 261–273 (1997).

    Article  Google Scholar 

  60. A. F. Shatskiy, K. D. Litasov, and Yu. N. Palyanov, “Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data,” Russ. Geol. Geophys. 56 (1–2), 113–142 (2015).

    Article  Google Scholar 

  61. G. J. Simandl and S. Paradis, “Carbonatites: related ore deposits, resources, footprint, and exploration methods,” Appl. Earth Sci. (Trans. Inst. Min. Metall. B) 127 (4), 123–152 (2018).

  62. R. N. Sukheswala, “Carbonatite kimberlite complexes of India,” J. Geol. Soc. India. 17 (4), 429–437 (1976).

    Google Scholar 

  63. P. Tantkar, R. Patidar, and V. Agrawal, “A study of fenitization around Newania carbonatite body, district Udaipur, Rajasthan,” IJSRR. 8 (2), 76–80 (2019).

    Google Scholar 

  64. S. Tappe and A. Simonetti, “Combined U-Pb geochronology and Sr-Nd isotope analysis of the Ice River perovskite standard, with implications for kimberlite and alkaline rock petrogenesis,” Chem. Geol. 304–305, 10–17 (2012).

    Article  Google Scholar 

  65. Z. Trdlicka and V. Hoffman, “Undersuchengen der chemischen zusammensetzung der gangkarbonate von Kutna Hora (CSSR),” Freiberger Forschungshefte. C231, 29–81 (1976).

    Google Scholar 

  66. M. A. Van Zuilen, A. Lepland, J. Teranes, J. Finarelli, M. Wahlen, and G. Arrhenius, “Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland,” Precambrian Res. 126, 331–348 (2003).

    Article  Google Scholar 

  67. I. V. Veksler, C. Petibon, G. A. Jenner, A. M. Dorfman, and D. B. Dingwell, “Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave,” J. Petrol. 39, 2095–2104 (1998).

    Article  Google Scholar 

  68. P. K. Verma and R. O. Greiling, “Tectonic evolution of the Aravalli Orogen (NW India): an inverted Proterozoic rift basin,” Geol. Rundsch. 84 (4), 683–696 (1995)

    Article  Google Scholar 

  69. I. M. Villa, “Diffusion in mineral geochronometers: present and absent,” Chem. Geol. 420, 1–10 (2016).

    Article  Google Scholar 

  70. S. G. Viladkar, “The fenitized aureole of the Newania carbonatite, Rajasthan,” Geol. Mag. 117 (3), 285–292 (1980).

    Article  Google Scholar 

  71. S. G. Viladkar, “Carbonatite occurrences in Rajasthan, India,” Petrology 6 (3), 272–283 (1998).

    Google Scholar 

  72. S. G. Viladkar and I. Ghose, “U-rich pyrochlore in carbonatite of Newania, Rajasthan,” Neues Jahrb. für Mineralogie – Monatshefte 3, 97–106 (2002).

  73. S. G. Viladkar and P. B. Pawaskar, “Rare earth element abundances in carbonatites and fenites of the Newania complex, Rajasthan, India,” Bull. Geol. Soc. Finland. 61, 113–122 (1989).

    Article  Google Scholar 

  74. S. G. Viladkar and R. Ramesh, “Stable isotope geochemistry of some Indian carbonatites: implications for magmatic processes and post-emplacement hydrothermal alteration,” Comunicaçõe Geológicas. 101 (1), 55–62 (2014).

    Google Scholar 

  75. S. G. Viladkar and W. Wimmenauer, “Mineralogy and geochemistry of the Newania carbonatite–fenite complex, Rajasthan, India,” N. Jb. Mineral. Abh. 156, 1–21 (1986).

    Google Scholar 

  76. S. G. Viladkar, J. R. Kienast, and S. Fourcade, “Mineralogy of the Newania carbonatite, Rajsthan, India,” IAGOD Symposium Abstracts (Orlean, 1993), p. 55.

  77. S. G. Viladkar, U. Bismayer, and P. Zietlow, “Metamict U‑rich pyrochlore of Newania carbonatite, Udaipur, Rajasthan,” J. Geol. Soc. India 89, 133–138 (2017).

    Article  Google Scholar 

  78. W. Wang, P. A. Cawood, M. K. Pandit, M.-F. Zhou, and W. T. Chen, “Zircon U-Pb and Hf isotope evidence for an Eoarchaean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India,” J. Geol. Soc. 174, 759–772 (2017).

    Article  Google Scholar 

  79. M. Wiedenbeck, P. Alle, F. Corfu, W. L. Griffin, M Meier, F. Oberli, A. von Quadt, J. C. Roddick, and W. Spiegel, “Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis,” Geostand. Newslett. 19, 1–38 (1995).

    Article  Google Scholar 

  80. J. S. Williams, “U-Th-Pb geochronology by ion microprobe. Application of microanalytical techniques to understanding mineralizing processes,” Rev. Econ. Geol. 7, 1–35 (1998).

    Google Scholar 

  81. A. R. Woolley and H. A. Buckley, “Magnesite-siderite series carbonates in the Nkombwa and Newania carbonatite complexes. S.Afr.1.Geol. 96(3), 126–130 (1993).

    Google Scholar 

  82. A. R. Woolley and D. R. C. Kempe, “Carbonatites: nomenclature, average chemical compositions and element distribution,” In Carbonatites: Genesis and Evolution, Ed. by K. Bell (Unwin Hyman, London, 1989), pp. 1–14.

    Google Scholar 

  83. A. R. Woolley and B. A. Kjarsgaard, “Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database,” Can. Mineral. 46 (4), 741–752 (2008).

    Article  Google Scholar 

  84. Y. Ying, W. Chen, J. Lu, Sh.-Y. Jiang, and Yu. Yang, “In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China,” Lithos 290–291, 159–171 (2017).

    Article  Google Scholar 

  85. A. N. Zaitsev, T. C. Williams, T. E. Jeffries, S. Strekopytov, J. Moutte, O. V. Ivashchenkova, J. Spratt, S. V. Petrov, F. Wall, R. Seltmann, and A. P. Borozdin, “Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes,” Ore Geol. Rev. 64, 477–498 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the two anonymous reviewers for constructive criticism.

Funding

This study was supported by Russian Foundation for Basic Research, project no. 19-55-45010, and Indian Grant DST RFBR 2019/120. This work was funded as part of the project “Thematic and Methodic Works in 2021–2023 Aimed on the Development of Laboratory and Analytical Methods under the State Geological Survey” performed by the Center for Isotope Research at Karpinsky Geological Institute (VSEGEI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Sorokhtina, B. V. Belyatsky, V. A. Zaitsev, S. G. Viladkar, N. N. Kononkova or A. Ghatak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokhtina, N.V., Belyatsky, B.V., Zaitsev, V.A. et al. New Data on the Age and Genesis of the Newania Carbonatite Complex, Rajasthan, India. Geochem. Int. 60, 1237–1261 (2022). https://doi.org/10.1134/S0016702922120072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922120072

Keywords:

Navigation