Skip to main content
Log in

CuI and Copper Nanoparticles in the Catalytic Amination of 2-Halopyridines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The N-heteroarylation of n-octylamine and adamantane-containing amines with 2-iodopyridine and 2-bromopyridine and its fluorinated derivatives under the catalysis of CuI and copper nanoparticles in DMSO in the presence of various ligands was studied. 2-Isobutyrylcyclohexanone was found to be the most efficient ligand in the reactions catalyzed by CuI. In the reactions catalyzed by copper nanoparticles, 2-isobutyrylcyclohexanone or l-proline turned to be most active. The yields of the reactions catalyzed by copper nanoparticles were better than or equal to those in the CuI-catalyzed processes. The possibility of nanocatalyst recycling was studied, and its reuse in 6 cycles without loss of activity was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Sambiagio, C., Marsden, S.P., Blacker, A.J., and McGowan, P.C., Chem. Soc. Rev., 2014, vol. 43, p. 3525. https://doi.org/10.1039/c3cs60289

    Article  CAS  PubMed  Google Scholar 

  2. Neetha, M., Saranya, S., Harry, N.A., and Anilkumar, G., ChemistrySelect, 2020, vol. 5, p. 736. https://doi.org/10.1002/slct.201904436

    Article  CAS  Google Scholar 

  3. Beletskaya, I.P. and Averin, A.D., Russ. Chem. Rev., 2021, vol. 90, p. 1359. https://doi.org/10.1070/RCR4999

    Article  Google Scholar 

  4. Hemmati, S., Kamangar, S.A., Yousefi, M., Salehi, M.H., and Hekmati, M., Appl. Organomet. Chem., 2020, vol. 34, p. e5611. https://doi.org/10.1002/aoc.5611

  5. Sardarian, A.R., Zohourian-Mashmoul, N., and Esmaeilpour, M., Monatsh. Chem., 2018, vol. 149, p. 1101. https://doi.org/10.1007/s00706-018-2148-4

    Article  CAS  Google Scholar 

  6. Sardarian, A.R., Eslahi, H., and Esmaeilpour, M., ChemistrySelect, 2018, vol. 3, p. 1499. https://doi.org/10.1002/slct.201702452

    Article  CAS  Google Scholar 

  7. Esmaeilpour, M., Sardarian, A.R., and Firouzabadi, H., Appl. Organomet. Chem., 2018, vol. 32, p. e4300. https://doi.org/10.1002/aoc.4300

  8. Mitrofanov, A.Yu., Murashkina, A.V., Martín-García, I., Alonso, F., and Beletskaya, I.P., Catal. Sci. Technol., 2017, vol. 7, p. 4401. https://doi.org/10.1039/C7CY01343D

    Article  CAS  Google Scholar 

  9. Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., and Varma, R.S., Chem. Rev., 2016, vol. 116, p. 3722. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  10. Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyakhovich, M.S., Murashkina, A.V., Averin, A.D., Abel, A.S., Maloshitskaya, O.A., Savelyev, E.N., Orlinson, B.S., and Beletskaya, I.P., Russ. J. Org. Chem., 2019, vol. 55, p. 737. https://doi.org/10.1134/S1070428019060010

    Article  CAS  Google Scholar 

  12. Lyakhovich, M.S., Murashkina, A.V., Panchenko, S.P., Averin, A.D., Abel, A.S., Maloshitskaya, O.A., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2021, vol. 57, p. 768. https://doi.org/10.1134/S1070428021050031

    Article  CAS  Google Scholar 

  13. Mane, C.P., Mahamuni, S.V., Kolekar, S.S., Han, S.H., and Anuse, M.A., Arab. J. Chem., 2016, vol. 9, p. S1420. https://doi.org/10.1016/j.arabjc.2012.03.021

  14. Suryavanshi, V.J., Patil, M.M., Zanje, S.B., Kokare, A.N., Kore, G.D., Anuse, M.A., and Mulik, G.N., Sep. Sci. Technol., 2016, vol. 51, p. 1690. https://doi.org/10.1080/01496395.2016.1177076

    Article  CAS  Google Scholar 

  15. Suryavanshi, V.J., Patil, M.M., Zanje, S.B., Kokare, A.N., Gaikwad, A.P., Anuse, M.A., and Mulik, G.N., Russ. J. Inorg. Chem., 2017, vol. 62, p. 257. https://doi.org/10.1134/S003602361702019X

    Article  CAS  Google Scholar 

  16. Kore, G.D., Zanje, S.B., Kokare, A.N., Suryavanshi, V.J., Anuse, M.A., Kolekar, S.S., J. Radioanal. Nucl. Chem., 2021, vol. 329, p. 975. https://doi.org/10.1007/s10967-021-07828-3

    Article  CAS  Google Scholar 

  17. Wahyudi, S., Soepriyanto, S., Mubarok, M.Z., and Sutarno, Mater. Sci. Eng., 2018, vol. 395, p. 012014. https://doi.org/10.1088/1757-899X/395/1/012014

    Article  Google Scholar 

  18. Murashkina, A.V., Averin, A.D., Panchenko, S.P., Abel, A.S., Maloshitskaya, O.A., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., Correia, C.R.D., and Beletskaya, I.P., Russ. J. Org. Chem., 2022, vol. 58. https://doi.org/10.1134/S107042802201002X

  19. Gopalan, B., Thomas, A., and Shah, D.M., WO Patent Appl. no. 2006090244, 2006; Chem. Abstr., 2006, vol. 145, no. 292604.

  20. Novakov, I.A., Kulev, I.A., Radchenko, S.S., Birznieks, K.A., Boreko, E.I., Vladyko, G.V., and Korobchenko, L.V., Pharm. Chem. J., 1987, vol. 21, p. 287. https://doi.org/10.1007/BF007674006

    Article  Google Scholar 

  21. Popov, Yu.V., Mokhov, V.M., and Tankabekyan, N.A., Russ. J. Appl. Chem., 2013, vol. 86, p. 404. https://doi.org/10.1134/S1070427213030191

    Article  CAS  Google Scholar 

  22. Novikov, S.S., Khardin, A.P., Radchenko, S.S., Novakov, I.A., Orlinson, B.S., Blinov, V.F., Gorelov, V.I., and Zamakh, V.P., USSR Patent no. 682507, 1978; Chem. Abstr., 1979, vol. 91, no. P193887e.

  23. Novakov, I.A., Orlinson, B.S., Savelyev, E.N., Potaenkova, E.A., and Shilin, A.K., RF Patent no. 2495020 C1, 2013.

  24. Averin, A.D., Ranyuk, E.R., Golub, S.L., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Synthesis, 2007, vol. 2007, p. 2215. https://doi.org/10.1055/s-2007-983760

    Article  CAS  Google Scholar 

  25. Abel, A.S., Averin, A.D., Anokhin, M.V., Maloshitskaya, O.A., Butov, G.M., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2015, vol. 51, p. 301. https://doi.org/10.1134/S1070428015030021

    Article  CAS  Google Scholar 

  26. Harada, T., Ueda, Y., Iwai, T., and Sawamura, M., Chem. Commun., 2018, vol. 54, p. 1718. https://doi.org/10.1039/C7CC08181B

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2021-959 of 27.09.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Averin.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuliukhina, D.S., Averin, A.D., Panchenko, S.P. et al. CuI and Copper Nanoparticles in the Catalytic Amination of 2-Halopyridines. Russ J Org Chem 58, 167–174 (2022). https://doi.org/10.1134/S1070428022020014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022020014

Keywords:

Navigation