Skip to main content
Log in

Mass Spectra of New Heterocycles: XXIII. Electron Impact and Chemical Ionization Study of 5-[(Cyanomethyl)sulfanyl]- and 5-[(1,3-Dioxolan-2-ylmethyl)sulfanyl]-1H-pyrrol-2-amines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The fragmentation of 5-[(cyanomethyl)sulfanyl]- and 5-[(1,3-dioxolan-2-ylmethyl)sulfanyl]-1H-pyrrol-2-amines under electron impact (70 eV) and chemical ionization with methane as reactant gas has been studied for the first time. Electron impact ionization of 5-[(cyanomethyl)sulfanyl]-substituted pyrroles generates low-stability molecular ions {M+·, Irel 4–22%; cf. Irel 16–69% for 5-[(1,3-dioxolan-2-ylmethyl)sulfanyl] analogs} whose primary fragmentation involves cleavage of the C–S bond with expulsion of NCCH2 radical. Other fragmentation pathways of the molecular ions include formation of [M – CHR4]+· ions (R4 = CN) and substituent decomposition products. The mass spectra of 5-[(1,3-dioxolan-2-ylmethyl)sulfanyl]pyrroles characteristically show [M – SCH2R4]+ ion peak. The most intense ion peaks in the chemical ionization mass spectra of 5-[(cyanomethyl)sulfanyl] derivatives are those of M+· (Irel 18–69%) and [M + H]+ (Irel 34–100%). Both 5-[(cyanomethyl)sulfanyl]- and 5-[(1,3-dioxolan-2-ylmethyl)sulfanyl]pyrroles decompose mainly through cleavage of the CH2–S and C5–S bonds with the formation of stable [M – CH2R4]+ (Irel 92–100%), [M + H – CH2R4]+· (Irel 22–75%), and [M + H – SCH2R4]+· ions (Irel 6–25%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2021, vol. 57, p. 347. https://doi.org/10.1134/S1070428021030040

    Article  CAS  Google Scholar 

  2. Walsh, C.T., Garneau-Tsodikova, S., and HowardJones, A.R., Nat. Prod. Rep., 2006, vol. 23, p. 517. https://doi.org/10.1039/b605245m

    Article  CAS  PubMed  Google Scholar 

  3. Forte, B., Malgesini, B., Piutti, C., Quartieri, F., Scolaro, A., and Papeo, G., Mar. Drugs, 2009, vol. 7, p. 705. https://doi.org/10.3390/md7040705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russel, J.S., Pelkey, E.T., and Yoon-Miller, S.J.P., Prog. Heterocycl. Chem., 2011, vol. 22, p. 143. https://doi.org/10.1016/S0959-6380(11)22006-3

    Article  CAS  Google Scholar 

  5. Bellina, F. and Rossi, R., Tetrahedron, 2006, vol. 62, p. 7213. https://doi.org/10.1016/j.tet.2006.05.024

    Article  CAS  Google Scholar 

  6. Abele, E., Abele, R., and Lukevics, E., Chem. Heterocycl. Compd., 2004, vol. 40, p. 1. https://doi.org/10.1023/B:COHC.0000023761.76443.34

    Article  CAS  Google Scholar 

  7. Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., and Sharma, P., RSC Adv., 2015, vol. 5, p. 15233. https://doi.org/10.1039/C4RA15710A

    Article  CAS  Google Scholar 

  8. Montalbano, A., Parrino, B., Diana, P., Barraja, P., Carbone, A., Spanò, V., and Cirrincione, G., Tetrahedron, 2013, vol. 69, p. 2550. https://doi.org/10.1016/j.tet.2013.01.076

    Article  CAS  Google Scholar 

  9. Joshi, S.D., More, U.A., Kulkarni, V.H., and Amina­bhavi, T.M., Curr. Org. Chem., 2013, vol. 17, p. 2279. https://doi.org/10.2174/13852728113179990040

    Article  CAS  Google Scholar 

  10. Khajuria, R., Dham, S., and Kapoor, K.K., RSC Adv., 2016, vol. 6, p. 37039. https://doi.org/10.1039/c6ra03411j

    Article  CAS  Google Scholar 

  11. Kalinin, A.A. and Mamedov, V.A., Chem. Heterocycl. Compd., 2011, vol. 46, p. 1423. https://doi.org/10.1007/s10593-011-0688-1

    Article  CAS  Google Scholar 

  12. Nosova, E.V., Poteeva, A.D., Lipunova, G.N., Slepu­khin, P.A., and Charushin, V.N., Russ. J. Org. Chem., 2019, vol. 55, p. 384. https://doi.org/10.1134/S1070428019030205

    Article  CAS  Google Scholar 

  13. Khafizova, L.O., Shaibakova, M.G., Richter, N.A., and Dzhemilev, U.M., Russ. J. Org. Chem., 2020, vol. 56, p. 218. https://doi.org/10.1134/S1070428020020074

    Article  CAS  Google Scholar 

  14. Lion, D.C., Baudry, R., Hedayatullah, M., Da Con­ceiçlato, L., Genard, S., and Maignan, J., J. Heterocycl. Chem., 2002, vol. 39, p. 125. https://doi.org/10.1002/jhet.5570390118

    Article  CAS  Google Scholar 

  15. Ferreira, V.F., de Souza, M.C.B.V., Cunha, A.C., Pereira, L.O.R., and Ferreira, M.L.G., Org. Prep. Proced. Int., 2001, vol. 33, p. 411. https://doi.org/10.1080/00304940109356613

    Article  CAS  Google Scholar 

  16. Estévez, V., Villacampa, M., and Menéndez, J.C., Chem. Soc. Rev., 2010, vol. 39, p. 4402. https://doi.org/10.1039/b917644f

    Article  CAS  PubMed  Google Scholar 

  17. Patil, N.T. and Yamamoto, Y., Arkivoc, 2007, vol. 2007, part (x), p. 121. https://doi.org/10.3998/ark.5550190.0008.a11

    Article  Google Scholar 

  18. Leeper, F.J. and Kelly, J.M., Org. Prep. Proced. Int., 2013, vol. 45, p. 171. https://doi.org/10.1080/00304948.2013.786590

    Article  CAS  Google Scholar 

  19. Misra, N.C., Panda, K., Ila, H., and Junjappa, H., J. Org. Chem., 2007, vol. 72, p. 1246. https://doi.org/10.1021/jo062139j

    Article  CAS  PubMed  Google Scholar 

  20. Muzalevskiy, V.M., Shastin, A.V., Balenkova, E.S., Haufe, G., and Nenajdenko, V.G., Synthesis, 2009, vol. 2009, p. 3905. https://doi.org/10.1055/s-0029-1217080

    Article  CAS  Google Scholar 

  21. Saracoglu, N., Top. Heterocycl. Chem., 2007, vol. 11, p. 1. https://doi.org/10.1007/7081_2007_073

    Article  CAS  Google Scholar 

  22. Xiao, X.-Y., Zhou, A.-H., Shu, C., Pan, F., Li, T., and Ye, L.-W., Chem. Asian J., 2015, vol. 10, p. 1854. https://doi.org/10.1002/asia.201500447

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, Z., Jin, H., Rudolph, M., Rominger, F., and Hashmi, A.S.K., Angew. Chem., Int. Ed., 2018, vol. 57, p. 16549. https://doi.org/10.1002/anie.201810369

    Article  CAS  Google Scholar 

  24. Chen, N., Lu, Y., Gadamasetti, K., Hurt, C.R., Norman, M.H., and Fotsch, C., J. Org. Chem., 2000, vol. 65, p. 2603. https://doi.org/10.1021/jo9917902

    Article  CAS  PubMed  Google Scholar 

  25. Gillis, H.M., Greene, L., and Thompson, A., Synlett, 2009, vol. 2009, p. 112. https://doi.org/10.1055/s-0028-1087486

    Article  CAS  Google Scholar 

  26. Domingo, V.M., Brillas, E., Torrelles, X., Rius, J., and Julia, L., J. Org. Chem., 2001, vol. 66, p. 8236. https://doi.org/10.1021/jo010514w

    Article  CAS  PubMed  Google Scholar 

  27. Li, H., Lambert, C., and Stahl, R., Macromolecules, 2006, vol. 39, p. 2049. https://doi.org/10.1021/ma0601868

    Article  CAS  Google Scholar 

  28. Thamyongkit, P., Bhise, A.D., Taniguchi, M., and Lindsey, J.S., J. Org. Chem., 2006, vol. 71, p. 903. https://doi.org/10.1021/jo051806q

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X., Nie, Z., Shao, J., Chen, W., and Yu, Y., New J. Chem., 2018, vol. 42, p. 2368. https://doi.org/10.1039/c7nj04584k

    Article  CAS  Google Scholar 

  30. Jasiński, M., Watanabe, T., and Reissig, H.-U., Eur. J. Org. Chem., 2013, vol. 2013, p. 605. https://doi.org/10.1002/ejoc.201201210

    Article  CAS  Google Scholar 

  31. Fürstner, A., Angew. Chem., Int. Ed., 2003, vol. 42, p. 3582. https://doi.org/10.1002/anie.200300582

    Article  CAS  Google Scholar 

  32. Bonauer, C., Zabel, M., and König, B., Org. Lett., 2004, vol. 6, p. 1349. https://doi.org/10.1021/ol049855x

    Article  CAS  PubMed  Google Scholar 

  33. Nedolya, N.A., PhD Thesis, Utrecht University, The Netherlands, 1999.

  34. Brandsma, L. and Nedolya, N.A., Synthesis, 2004, vol. 2004, p. 735. https://doi.org/10.1055/s-2004-816005

    Article  CAS  Google Scholar 

  35. Tarasova, O.A., Nedolya, N.A., Vvedensky, V.Yu., Brandsma, L., and Trofimov, B.A., Tetrahedron Lett., 1997, vol. 38, p. 7241. https://doi.org/10.1016/S0040-4039(97)01680-8

    Article  CAS  Google Scholar 

  36. Brandsma, L., Nedolya, N.A., and Trofimov, B.A., Eur. J. Org. Chem., 1999, vol. 1999, p. 2663. https://doi.org/10.1002/(SICI)1099-0690(199910)1999:10<2663::AID-EJOC2663>3.0.CO;2-C

    Article  Google Scholar 

  37. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trof­imov, B.A., Tetrahedron Lett., 2010, vol. 51, p. 5316. https://doi.org/10.1016/j.tetlet.2010.07.179

    Article  CAS  Google Scholar 

  38. Tarasova, O.A., Nedolya, N.A., Albanov, A.I., and Trofimov, B.A., Synthesis, 2019, vol. 51, p. 3697. https://doi.org/10.1055/s-0037-1611883

    Article  CAS  Google Scholar 

  39. Tarasova, O.A., Nedolya, N.A., Albanov, A.I., and Trofi­mov, B.A., ChemistrySelect, 2020, vol. 5, p. 5726. https://doi.org/10.1002/slct.202000577

    Article  CAS  Google Scholar 

  40. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2013, vol. 49, p. 384. https://doi.org/10.1134/S1070428013030123

    Article  CAS  Google Scholar 

  41. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2014, vol. 50, p. 35. https://doi.org/10.1134/S1070428014010072

    Article  CAS  Google Scholar 

  42. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., Taraso­va, O.A., and Shagun, V.A., Russ. J. Org. Chem., 2019, vol. 55, p. 1853. https://doi.org/10.1134/S1070428019120078

    Article  CAS  Google Scholar 

  43. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2020, vol. 56, p. 768. https://doi.org/10.1134/S1070428020050073

    Article  CAS  Google Scholar 

  44. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., Zhanchipova, E.R., and Volostnykh, O.G., Russ. J. Org. Chem., 2010, vol. 46, p. 1038. https://doi.org/10.1134/S1070428010070134

    Article  CAS  Google Scholar 

  45. Klyba, L.V., Tarasova, O.A., and Nedolya, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 1773. https://doi.org/10.1134/S1070428016120101

    Article  CAS  Google Scholar 

  46. Lebedev, A.T., Mass spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: BINOM, 2003.

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Baikal joint analytical center (Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Klyba.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 12, pp. 1669–1683 https://doi.org/10.31857/S0514749221120028.

For communication XXII, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R. et al. Mass Spectra of New Heterocycles: XXIII. Electron Impact and Chemical Ionization Study of 5-[(Cyanomethyl)sulfanyl]- and 5-[(1,3-Dioxolan-2-ylmethyl)sulfanyl]-1H-pyrrol-2-amines. Russ J Org Chem 57, 1901–1912 (2021). https://doi.org/10.1134/S1070428021120022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021120022

Keywords:

Navigation