Skip to main content
Log in

Mass Spectra of New Heterocycles: XX. Electron Impact and Chemical Ionization Mass Spectra of 5-(Prop-2-yn-1-ylsulfanyl)-1H-pyrrol-2-amines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Electron impact (70 eV) and chemical ionization (methane as reactant gas) mass spectra of 1-alkyl- and 1-[2-(vinyloxy)ethyl]-5-(prop-2-yn-1-ylsulfanyl)-1H-pyrrol-2-amines have been studied for the first time. The title compounds under electron impact form stable molecular ions which decompose mainly along pathways typical of the molecular ions derived from the corresponding intramolecular cyclization products, 7-alkyl- and 7-[2-(vinyloxy)ethyl]-2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines. In addition, fragment ions that could be formed only via decomposition of unrearranged molecular ion were detected. The main fragmentation pathway of their molecular ions involves cleavage of the N1-CAlk bond with the formation of stable [M − R3]+ ions (Irel 85–100%) {except for N,N-diethyl- and N,N-dipropyl-1-[2-(vinyloxy)emyl]-5-(prop-2-yn-1-ylsulfanyl)-1H-pyrrol-2-amines}. The results of quantum chemical calculations at the B3LYP/6-311+G(d,p) level of theory are consistent with the experimental data. In the chemical ionization mass spectra of 5-(prop-2-yn-1-ylsulfanyl)-1H-pyrrol-2-amines, the major peaks were those corresponding to M (Irel 65–100%) and [M + H]+ (Irel 75–100%). The title compounds have been found to undergo partial (5–10%) thermally induced isomerization to 5-(prop-1-yn-1-ylsulfanyl)-1H-pyrrol-2-amines under the chemical ionization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2019, vol. 55, p. 824. https://doi.org/10.1134/S1070428019060125

    Article  CAS  Google Scholar 

  2. Sundberg, R.J., Comprehensive Heterocyclic Chemistry, Katritzky, A.R. and Rees, C.W., Eds., Oxford: Pergamon, 1984. vol. 4, p. 313.

  3. Gribble, G.W., Comprehensive Heterocyclic Chemistry II, Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., Eds., Oxford: Pergamon, 1996. vol. 2, p. 207.

  4. d’Ischia, M., Napolitano, A., and Pezzella, A., Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008. vol. 3, p. 353.

  5. Joshi, S.D., More, U.A., Kulkarni, V.H., and Aminabhav, T.M., Curr. Org. Chem., 2013, vol. 17, p. 2279. https://doi.org/10.2174/13852728113179990040

    Article  CAS  Google Scholar 

  6. Baumann, M., Baxendale, I.R., Ley, S.V., and Nikbin, N., Beilstein J. Org. Chem., 2011, vol. 7, p. 442. https://doi.org/10.3762/bjoc7.57

    Article  CAS  Google Scholar 

  7. Domingo, V.M., Brillas, E., Torrelles, X., Rius, J., and Julia, L., J. Org. Chem., 2001, vol. 66, p. 8236. https://doi.org/10.1021/jo010514w

    Article  CAS  Google Scholar 

  8. Rosa, A., Ricciardi, G., Baerends, E.J., Zimin, M., Rodgers, M.A.J., Matsumoto, S., and Ono, N., Inorg. Chem., 2005, vol. 44, p. 6609. https://doi.org/10.1021/ic050838t

    Article  CAS  Google Scholar 

  9. Cirrincione, G., Almerico, A.M., Aiello, E., and Dattolo, G., The Chemistry of Heterocyclic Compounds, Taylor, E.C., Ed., New York: Wiley, 1992. vol. 48, part 2, p. 299. https://doi.org/10.1002/9780470187340.ch3

    Chapter  Google Scholar 

  10. Marcotte, F.-A. and Lubell, W.D., Org. Lett., 2002, vol. 4, p. 2601. https://doi.org/10.1021/ol0262690

    Article  CAS  Google Scholar 

  11. Unverferth, K., Engel, J., Höfgen, N., Rostock, A., Günther, R., Lankau, H.-J., Menzer, M., Rolfs, A., Liebscher, J., Müller, B., and Hofmann, H., J. Med. Chem., 1998, vol. 41, p. 63. https://doi.org/10.1021/jm970327j

    Article  CAS  Google Scholar 

  12. Iaroshenko, V.O., Wang, Y., Sevenard, D.N., and Volochnyuk, D.M., Synthesis, 2009, p. 1851. https://doi.org/10.1055/s-0029-1216640

    Article  Google Scholar 

  13. Ong, C.W., Yang, Y.-T., Liu, M.-C., Fox, K.R., Liu, P.H., and Tung, H.-W., Org. Biomol. Chem., 2012, vol. 10, p. 1040. https://doi.org/10.1039/C1OB06803B

    Article  CAS  Google Scholar 

  14. Pućkowska, A., Midura-Nowaczek, K., and Bruzgo, I., Acta Pol. Pharm., 2008, vol. 65, p. 213.

    PubMed  Google Scholar 

  15. Baraldi, P.G., Zaid, A.N., Preti, D., Fruttarolo, F., Tabrizi, M.A., Iaconinoto, A., Pavani, M.G., Carrion, M.D., Cara, C.L.L., and Romagnoli, R., Arkivoc, 2006, part (vii), p. 20. https://doi.org/10.3998/ark.5550190.0007.704

  16. Broyles, S.S., Kremer, M., and Knutson, B.A., J. Virol., 2004, vol. 78, p. 2137. https://doi.org/10.1128/JVI.78.4.2137-2141.2004

    Article  CAS  Google Scholar 

  17. Chien, T.-C., Meade, E.A., Hinkley, J.M., and Townsend, L.B., Org. Lett., 2004, vol. 6, p. 2857. https://doi.org/10.1021/ol049207d

    Article  CAS  Google Scholar 

  18. Nair, V., Vinod, A.U., and Rajesh, C.A., J. Org. Chem., 2001, vol. 66, p. 4427. https://doi.org/10.1021/jo001714v

    Article  CAS  Google Scholar 

  19. Tarasova, O.A., Nedolya, N.A., Vvedensky, V.Yu., Brandsma, L., and Trofimov, B.A., Tetrahedron Lett., 1997, vol. 38, p. 7241. https://doi.org/10.1016/S0040-4039(97)01680-8

    Article  CAS  Google Scholar 

  20. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Synthesis, 2016, vol. 48, p. 4278. https://doi.org/10.1055/s-0035-1561492

    Article  CAS  Google Scholar 

  21. Brandsma, L., Nedolya, N.A., Tarasova, O.A., and Trofimov, B.A., Chem. Heterocycl. Compd., 2000, vol. 36, p. 1241. https://doi.org/10.1023/A:1017582315266

    Article  CAS  Google Scholar 

  22. Brandsma, L. and Nedolya, N.A., Synthesis, 2004, p. 735. https://doi.org/10.1055/s-2004-816005

    Article  Google Scholar 

  23. Nedolya, N.A. and Trofimov, B.A., Chem. Heterocycl. Compd., 2013, vol. 49, p. 152. https://doi.org/10.1007/s10593-013-1236-y

    Article  CAS  Google Scholar 

  24. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., J. Org. Chem., 2017, vol. 82, p. 7519. https://doi.org/10.1021/acs.joc.7b01217

    Article  CAS  Google Scholar 

  25. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Synthesis, 2018, vol. 50, p. 4313. https://doi.org/10.1055/s-0037-1609561

    Article  CAS  Google Scholar 

  26. Nedolya, N.A., Brandsma, L., Tarasova, O.A., Verkruijsse, H.D., and Trofimov, B.A., Tetrahedron Lett., 1998, vol. 39, p. 2409. https://doi.org/10.1016/S0040-4039(98)00211-1

    Article  CAS  Google Scholar 

  27. Brandsma, L., Nedolya, N.A., and Trofimov, B.A., Eur. J. Org. Chem., 1999, p. 2663. https://doi.org/10.1002/(SICI)1099-0690(199910)1999:10

  28. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Tetrahedron Lett., 2010, vol. 51, p. 5316. https://doi.org/10.1016/j.tetlet.2010.07.179

    Article  CAS  Google Scholar 

  29. Nedolya, N.A., Brandsma, L., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Russ. J. Org. Chem., 2011, vol. 47, p. 659. https://doi.org/10.1134/S1070428011050034

    Article  CAS  Google Scholar 

  30. Tarasova, O.A., Nedolya, N.A., Albanov, A.I., and Trofimov, B.A., Eur. J. Org. Chem., 2018, p. 5961. https://doi.org/10.1002/ejoc.201800987

    Article  CAS  Google Scholar 

  31. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2013, vol. 49, p. 384. https://doi.org/10.1134/S1070428013030123

    Article  CAS  Google Scholar 

  32. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2014, vol. 50, p. 35. https://doi.org/10.1134/S1070428014010072

    Article  CAS  Google Scholar 

  33. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., Zhanchipova, E.R., and Volostnykh, O.G., Russ. J. Org. Chem., 2010, vol. 46, p. 1038. https://doi.org/10.1134/S1070428010070134

    Article  CAS  Google Scholar 

  34. Klyba, L.V., Tarasova, O.A., Nedolya, N.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2016, vol. 52, p. 1587. https://doi.org/10.1134/S1070428016110063

    Article  CAS  Google Scholar 

  35. Klyba, L.V., Tarasova, O.A., and Nedolya, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 1773. https://doi.org/10.1134/S1070428016120101

    Article  CAS  Google Scholar 

  36. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/L464913

    Article  CAS  Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision A.01, Wallingford CT: Gaussian, 2009.

  38. Peng, C. and Schlegel, H.B., Isr. J. Chem., 1993, vol. 33, p. 449. https://doi.org/10.1002/ijch.199300051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed using the facilities of the Baikal Joint Analytical Center, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Klyba.

Additional information

Conflict of Interests

The authors declare the absence of conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 12, pp. 1857–1869.

For communication XIX, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R. et al. Mass Spectra of New Heterocycles: XX. Electron Impact and Chemical Ionization Mass Spectra of 5-(Prop-2-yn-1-ylsulfanyl)-1H-pyrrol-2-amines. Russ J Org Chem 55, 1853–1863 (2019). https://doi.org/10.1134/S1070428019120078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019120078

Keywords

Navigation